
ED2: A Case for Active Learning in Error Detection
Felix Neutatz

felix.neutatz@dfki.de
DFKI GmbH

Mohammad Mahdavi
mahdavilahijani@tu-berlin.de

TU Berlin

Ziawasch Abedjan
abedjan@tu-berlin.de

TU Berlin / DFKI GmbH

ABSTRACT
State-of-the-art approaches formulate error detection as a semi-
supervised classification problem. Recent research suggests that
active learning is insufficiently effective for error detection and pro-
poses the usage of neural networks and data augmentation to reduce
the number of these user-provided labels. However, we can show that
using the appropriate active learning strategy, it is possible to outper-
form the more complex models that rely on data augmentation. To
this end, we propose a multi-classifier approach with two-stage sam-
pling for active learning. This intuitive and neat sampling method
chooses the most promising cells across rows and columns for la-
beling. On three datasets, ED2 achieves state-of-the-art detection
accuracy while for large datasets, the required number of user labels
is lower by one order of magnitude compared to the state of the art.

1 INTRODUCTION
Data cleaning is an essential process in maintaining high data quality
and reliable analytics. A core step in data cleaning is identifying
erroneous values [1] and repairing them [14]. In this paper, we
consider the problem of error detection. Traditional approaches to
detecting errors were either rule-based or quantitative [1].

Recent research proposes to consider error detection as a classi-
fication task with the goal to predict whether a cell is erroneous or
not [8, 17]. These approaches assume that the required clean/dirty
labels are given by the user or drawn uniformly from the dataset. In
both scenarios the required amount of labels for a promising classi-
fication result is large. Therefore, Heidari et al. suggest using data
augmentation to reduce the labeling effort [8]. Given a set of initial
labels, data augmentation generates more training data for erroneous
examples to better fit the dataset. However, as they report in their
paper, their approach still needs an initial set of user-provided labels,
in the orders of 5% − 10% of the whole dataset. For a dataset, such
as Soccer [13] with 200, 000 rows and 10 columns, the user would
need to label around 200, 000 data cells (10% of the dataset), which
is huge. Heidari et al. claim that active learning based on uncertainty
sampling fails in case of extreme class imbalance [8]. We were work-
ing on exactly this problem in parallel and had a different experience.
Therefore, we want to make a case for active learning and show that
by leveraging an appropriate active learning strategy, it is possible
to achieve better accuracy across all openly available datasets that
Heidari et al. used [8]. In short, our sampling approach starts with a
small seed of uniformly sampled data cells, i.e., fewer than < 100
data cells. Then, we ask the user to label those cells that the current
machine learning model is not certain about. This way, the error
detection classifier can converge faster with much fewer initial user
labels, as we will show in the experiments. Our approach can be
used to bootstrap the initially required user labels for state-of-the-art
error detection approaches, such as HoloDetect [8].

In general, active learning-based sampling approaches need to ad-
dress two questions: (1) Considering that errors in different columns

a1 a2 a3

t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Dirty Dataset 1

ρ1 ρ2 ρ3

ρ4 ρ5 ρ6

ρ7 ρ8 ρ9

P1 P2 P3

P4 P5 P6

P7 P8 P9

Content &
Metadata
Features

Predictions
for other
attributes

Models

Feature Extractor

Column
Selector

Initializer

Batch
Generator

Column

Labeled
Cells

Active
Learning

Pred
ict

ion
s

Unlabeled Cells

Cross-
Validation

Hyper-
parameters

Results

Features
2

4

5

7

Unlabeled
Cells

3

8

9

6

Figure 1: The ED2 workflow.

are differently hard to detect, which columns should be selected for
user labeling? (2) Considering the class imbalance ratio between the
dirty and clean values inside any selected column, which data cells
should be selected for user labeling? We propose to use a two-stage
sampling approach with one classifier per column, requiring a sep-
arate training set per column [16]. Each classifier can use features
from the entire dataset for classifying the values of its corresponding
column. In particular, we discuss the following contributions:

• To reduce the user labeling effort, we present a new two-stage
active learning policy to progressively choose the appropri-
ate cells for labeling. This policy advances standard active
learning by not only finding the right cells within one column
(first stage), but also across all columns (second stage).

• We conduct several experiments on all openly available datasets
provided by Heidari et al. [8] showing that ED2 surpasses
state-of-the-art F1-score while requiring fewer user labels.
The required number of user labels is lower by an order of
magnitude for large datasets.

We provide more microbenchmarks [11], the implementation of
ED2, and results of other baselines in our repository1.

2 PROBLEM STATEMENT
We address the problem of error detection in relational datasets and
use the error definition of previous literature [1, 14]: Given a dataset
D = {t1, t2, ..., tN } with tuples ti , its schema A = {a1,a2, ...,aM }

with attributes aj , D[i, j] represents the cell value of the attribute aj
in the tuple ti . Now, given DC as the cleaned version of D, we define
an error as any cell value D[i, j] that deviates from its ground-truth
value DC [i, j]. In particular, we want to develop a sampling strategy
that chooses the most promising training set to maximizes the F1-
score defined as F1 = 2 × (P × R)/(P + R), where the precision (P)

1https://github.com/BigDaMa/ExampleDrivenErrorDetection

https://github.com/BigDaMa/ExampleDrivenErrorDetection

is the fraction of correctly detected errors and the recall (R) is the
fraction of the actual errors that are discovered.

3 TWO-STAGE ACTIVE LEARNING
We present the workflow of ED2 in Figure 1. ED2 takes a dirty
dataset D as input ❶. The Feature Extractor generates features ρ
that, similar to HoloDetect [8], cover information on the attribute,
tuple (across attributes), and dataset level for each data cell of the
dataset ❷. The details of the feature representation are described in
our technical report [11]. Then, the user receives an initial sample
of cells from all columns, which should be labeled as erroneous or
correct ❸. Leveraging the user-provided labels ❹, ED2 trains one
classifier for each column. ED2 leverages the user-provided labels
to automatically optimize the hyperparameters of the classification
models using grid search and cross-validation ❺. Afterward, ED2
applies this model to all data cells of the corresponding column
and estimates the probability of a cell to be erroneous ❻. In step ❼,
ED2 leverages the predictions P to augment the feature vector and
enable knowledge sharing across models. For instance, P6 denotes
the prediction that v6 is erroneous (red). Once the models for all
columns are initialized ❻, the actual active learning process starts.

Our two-stage active learning policy is implemented via the Col-
umn Selector component and the Batch Generator component. As
we train one classifier per column, the Column Selector has to choose
the column that should be labeled next ❽. In Section 3.1, we describe
how the Column Selector leverages the results of the models to make
this decision. Then, the Batch Generator selects the most promising
cells for the given column ❾ as detailed in Section 3.2. For each
data cell in the batch, its corresponding tuple is presented to the
user for manual verification ❹. The new labels are then added to the
training set of the corresponding column, model hyperparameters
are optimized ❺, and the classifier is retrained on the new data ❻.
The process continues and repeats the aforementioned steps from ❹

to ❾ in a loop as long as the user is willing to provide additional
labels. Then, the system applies the latest classification models for
each column, marks the errors, and returns the result to the user.

3.1 Column Selection
As we train one classifier per column, we need a strategy for the
Column Selector to decide the next column for user labeling. A
naive approach for column selection is the random column selection
strategy (RA). This strategy randomly chooses one column and lets
the user label one batch of cells for this selected column. A more
orderly approach is the selection in a round-robin fashion (RR). So,
we assign the batches to the user for all columns in equal portions
and in a circular order.

0 2 4 6 8 10 120

0.5

1

Iterations

F 1
-s

co
re

Adult - Income

0 2 4 6 8 10 120

0.5

1

Iterations

Adult - Age

Figure 3: Example of different model convergence behavior.
Both of the presented naive strategies do not consider that, for

some columns, the model might detect errors easily and converge

quickly, whereas, for other columns, the model might converge
slower. Slower convergence also means that the user needs to label
more cells to achieve the same performance. Figure 3 illustrates one
example of significant differences between the convergence behav-
ior of two columns. In this example, the optimal column selection
strategy would choose to label the column Income only for two iter-
ations because after that the classifier is already relatively accurate
in classifying the Income values. Then, the strategy would ask the
user for labels for the column Age. We studied three more strategies
to choose the next best column.
Min Certainty (MC). The classification model returns a probability
score for each prediction, i.e., the certainty. High certainty correlates
with model convergence [18]. Thus, we calculate the average cer-
tainty for all cells inside a column and choose the column with the
lowest average certainty.
Max Error (ME). In each iteration, we apply cross-validation on the
current labeled training set for the corresponding column. The cross-
validation scores are an estimate of the overall performance on the
whole column data and thereby also correlate with convergence [18].
We calculate the average of all cross-validation F1-scores per column
and choose the column with the minimum average F1-score.
Max Prediction Change (MPC). Prediction change is the fraction
of predictions that changed after the previous iteration. Prediction
change negatively correlates with active learning convergence [3].
We choose the column with the maximum prediction change.

Our experiments show that apart from the naive RA approach all
other approaches are similarly effective for the convergence of the
models, as long as no column starves for selection.

3.2 Distinct Batch Sampling
Once the next column has been selected by the Column Selector
component, the next step is to select actual values within a column.
For the data cell values within a column, we apply the query-by-
committee algorithm [15] because it is a good fit for XGBoost [4]
that has the fastest convergence in comparison to other models, such
as a support vector machine or naive Bayes, as preliminary exper-
iments showed [11]. The combination of the query-by-committee
algorithm and XGBoost also performs well in case of class imbal-
ance. Other advanced active learning algorithms that are designed
for the class imbalance problem can be applied as well [2]. Further-
more, we apply batch active learning [15] to reduce the runtime.
In order to keep the sampled batch diverse, we choose cells with
distinct values if possible. To train a classifier, we need positive and
negative examples for erroneous cells. As a minimum, we should
start active learning with two erroneous and two correct cells per
column. Instead of browsing through the whole dataset and iden-
tifying these cells to start up the classification, we run an outlier
detection method to pre-filter the possible cells. Here, we employ a
frequency-based ranker that ranks the values of each column by their
frequency. Hence, the initial set of cells contain rare and frequent
values as potential erroneous and clean training examples.

4 EXPERIMENTS
We measure the effectiveness of the several error detection methods
using precision (P), recall (R), and F1-score (F1). All experiments

10−3 10−2 10−1
0

0.25

0.5

0.75

1

Fraction of Labeled Cells

F 1
-s

co
re

Hospital

ED2
HoloDetect
ActiveL
NADEEF

10−5 10−4 10−3 10−2 10−1
0

0.25

0.5

0.75

1

Fraction of Labeled Cells

Soccer

10−5 10−4 10−3 10−2 10−1
0

0.25

0.5

0.75

1

Fraction of Labeled Cells

Adult

Figure 2: F1-score and labeling effort of different error detection methods for different datasets. The hourglass marks a time out.

0 2 4 6 8
·10−2

0

0.25

0.5

0.75

1

Fraction of Labeled Cells

F 1
-s

co
re

Hospital

MC
MPC
RR
RA
ME
Global Uncertainty

0 0.5 1 1.5 2
·10−4

0

0.25

0.5

0.75

1

Fraction of Labeled Cells

Soccer

0 1 2 3 4 5
·10−4

0

0.25

0.5

0.75

1

Fraction of Labeled Cells

Adult

Figure 4: Comparison of different column selection strategies.

were executed on a machine with 14 2.60GHz Intel Xeon E5-2690
CPUs. Our implementation uses 4 cores at maximum.

4.1 Experimental Setup
Baselines. We evaluate ED2 against the following competing error
detection approaches. HoloDetect [8] is an error detection frame-
work that leverages data augmentation. Note that in contrast to ED2,
the user does not only need to label cells as erroneous or correct
but additionally has to provide the correct value for erroneous cells.
ActiveL [8] is another version of HoloDetect that uses vanilla active
learning based on uncertainty sampling with a neural network [15].
NADEEF [6] is a rule violation detection system based on user-
provided rules. We leverage all useful constraints that were detected
by Metanome [12] and provide them on our repository1.
Our Approach. The default column selection strategy of ED2 is
MC. We choose the same active learning batch size of k = 50 as
reported by HoloDetect [8]. We choose XGBoost [4] as classifier
because of its robustness against irrelevant features [7, 11]. Since
ED2 is not deterministic, we apply it 10 times and report the average.

Table 1: Experimental datasets.
Dataset Columns Rows Errors

Hospital 19 1,000 2.65%
Soccer 10 200,000 1.56%
Adult 11 97,684 0.10%

Datasets. We conducted our experiments on all three openly avail-
able datasets that were used to evaluate HoloDetect [8]. Table 1 lists
these datasets along with their size and the corresponding fraction of

erroneous cells divided by all cells in the dataset. Hospital is a com-
monly used dataset to benchmark data cleaning algorithms [6, 8, 14].
Errors are introduced synthetically by randomly replacing characters
by the letter ’x’. The Soccer and Adult datasets and their corre-
sponding ground truth were provided by Rammerlaere et al. [13].
Both datasets contain typographical errors and value swaps.

Table 2: Best F1-score results of each method in Figure 2 and
their corresponding precision (P) and recall (R).

Hospital Soccer Adult

P R F1 P R F1 P R F1

ED2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
HoloDetect 0.90 0.99 0.94 0.92 1.00 0.96 0.99 0.99 0.99

ActiveL 0.96 0.61 0.75 0.84 0.68 0.76 0.99 0.98 0.99

NADEEF 1.00 0.28 0.44 1.00 0.12 0.22 1.00 0.92 0.96

4.2 Effectiveness
Figure 2 illustrates the F1-score of different error detection methods
with respect to the number of required labels, if applicable. Note
that the x-axis is scaled logarithmically.

For the small dataset Hospital, HoloDetect and ED2 require
labeling of 5% of the data to reach around 90% F1-score. However,
for large datasets, such as Soccer and Adult, ED2 outperforms
HoloDetect with one order of magnitude fewer labels, namely 0.2%
and 0.4% accordingly. ED2 also reaches the highest F1-score faster
than ActiveL. ActiveL converges slightly faster in the beginning for
the Hospital dataset because all columns have the same errors. This
characteristic fits the global uncertainty strategy a bit better. For
Soccer and Adult, we stopped ActiveL after one day. Therefore, we

Table 3: Runtime (seconds) of the error detection methods.
Method Hospital Soccer Adult

ED2 590 11,469 6115
HoloDetect 749 7685 6332
ActiveL 3836 56,535 128,132
NADEEF 19 26 15

can only report the initial performance and the estimated trend based
on the results reported by Heidari et al. [8].

In all our experiments, ED2 achieves state-of-the-art error de-
tection F1-score with comparably fewer labels. Only on Hospital,
HoloDetect has an initial edge as the errors in this dataset are all
the same and easy to generate. The main reason why ED2 requires
less labeling than the competing methods is its two-stage sampling
policy. This way, it can direct the user’s effort at those columns
that require the user’s attention the most. For instance, 92% of the
errors in the dataset Adult are present in the column Income alone.
NADEEF performs so well on the Adult dataset because we found
two integrity constraints that detect errors in this column perfectly.

Table 3 shows that the runtime of ED2 is comparable to the
runtime reported for HoloDetect. ED2 does not need to perform
data augmentation but instead, it has to train a new model for each
active learning iteration. ActiveL requires significantly more time
than ED2 because training the neural network and predicting for
all cells of the table instead of only for one column per iteration is
more time-intensive. NADEEF requires very low runtime because
we assume that the constraints are known.

4.3 Column Selection Strategy
Figure 4 illustrates how the column selection strategies proposed
in Section 3.1 perform on the three datasets. As expected, the Ran-
dom strategy performs poorly because it does not consider model
convergence. The strategies that do consider model convergence
specifically, such as MC, MPC, and ME, slightly outperform the
Round-Robin strategy. Furthermore, they all reach the optimal F1-
score faster than ActiveL. For the Adult dataset, we see that the
performance drops for one iteration. The reason is that the MC strat-
egy will focus first on the column Income, which has the most errors.
Then, it will start to improve the recall on the other columns. If the
model is not immediately perfect, the overall precision drops more
than we gain in recall and therefore we see the F1-score drop.

5 RELATED WORK
Traditional Error Detection. Error detection has received exten-
sive attention in the information management community, such as
NADEEF [6] and KATARA [5]. In contrast to learning-based meth-
ods, these methods require the user to provide rules.

Machine Learning-Based Error Detection. Machine learning
has been leveraged to address the error detection task as a clas-
sification problem [8, 17]. Although these approaches require the
user to provide a portion of the dataset as initial labeled and cor-
rected data cells, ED2 progressively asks the user to label the most
promising data cells to reduce user involvement. Finally, there are
methods that aggregate the results of other error detection methods
and thereby achieve very accurate detection [1, 10, 17]. This line
of research is orthogonal to our work because our method could
be plugged into any of the corresponding frameworks. ActiveClean

contains an error detection method that assumes that the user trains
an application-specific machine learning model on the dataset in
question [9]. Therefore, the user has to provide labels for the corre-
sponding machine learning task for all tuples of the dataset.

6 CONCLUSIONS
We showed that unlike previous installments of active learning for
error detection, using a two-stage active learning approach results in
state-of-the-art F1-score while requiring comparably low user effort.
For large datasets, ED2 requires one order of magnitude fewer labels
than competing learning-based approaches.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Trans-
port and Digital Infrastructure - project DAYSTREAM (19F2031A).

REFERENCES
[1] Ziawasch Abedjan et al. 2016. Detecting Data Errors: Where are we and what

needs to be done? PVLDB 9, 12 (2016), 993–1004.
[2] Josh Attenberg and Seyda Ertekin. 2013. Class imbalance and active learning. H.

He, & Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications
(2013), 101–149.

[3] Michael Bloodgood and K Vijay-Shanker. 2009. A method for stopping active
learning based on stabilizing predictions and the need for user-adjustable stopping.
In CoNLL. 39–47.

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system.
In SIGKDD. 785–794.

[5] Xu Chu et al. 2015. Katara: A data cleaning system powered by knowledge bases
and crowdsourcing. In SIGMOD. 1247–1261.

[6] Michele Dallachiesa et al. 2013. NADEEF: a commodity data cleaning system. In
SIGMOD. 541–552.

[7] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Ann. Stat. (2001), 1189–1232.

[8] Alireza Heidari et al. 2019. HoloDetect: Few-Shot Learning for Error Detection.
In SIGMOD.

[9] Sanjay Krishnan et al. 2016. ActiveClean: Interactive Data Cleaning For Statistical
Modeling. PVLDB 9, 12 (2016), 948–959.

[10] Mohammad Mahdavi et al. 2019. Raha: A Configuration-Free Error Detection
System. In SIGMOD.

[11] Felix Neutatz et al. 2019. ED2: Two-stage Active Learning for Error Detection –
Technical Report. (2019). arXiv:1908.06309

[12] Thorsten Papenbrock et al. 2015. Data Profiling with Metanome. PVLDB 8, 12
(2015), 1860–1863.

[13] Joeri Rammelaere and Floris Geerts. 2018. Explaining repaired data with CFDs.
PVLDB 11, 11 (2018), 1387–1399.

[14] Theodoros Rekatsinas et al. 2017. HoloClean: Holistic Data Repairs with Proba-
bilistic Inference. PVLDB 10, 11 (2017), 1190–1201.

[15] Burr Settles. 2010. Active learning literature survey. University of Wisconsin,
Madison 52, 55-66 (2010), 11.

[16] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An
overview. IJDWM 3, 3 (2007), 1–13.

[17] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error detec-
tion. In SSDBM. 1.

[18] Jingbo Zhu and Eduard H Hovy. 2007. Active Learning for Word Sense Disam-
biguation with Methods for Addressing the Class Imbalance Problem. In EMNLP-
CoNLL, Vol. 7. 783–790.

View publication stats

http://arxiv.org/abs/1908.06309
https://www.researchgate.net/publication/335062694

	Abstract
	1 Introduction
	2 Problem Statement
	3 Two-Stage Active Learning
	3.1 Column Selection
	3.2 Distinct Batch Sampling

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness
	4.3 Column Selection Strategy

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

