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Abstract

Consumers are increasingly pressuring companies to disclose
sustainability data as sustainable development gains public impor-
tance. In response, companies publish their goals and strategies
in various online sustainability reports. Domain experts must
continuously analyze these reports to combat greenwashing by
extracting key details of companies’ sustainability objectives for
structured databases, which is time-consuming.

In this paper, we propose a novel approach to automatically
extract key details from sustainability objectives using weak su-
pervision. Our method tokenizes the objectives and employs a
weakly supervised token-labeling algorithm that converts coarse,
objective-level annotations into token-level labels. A transformer
model is then fine-tuned on these weak supervision signals for
sequence labeling. This approach enables automatic extraction
of key details from new sustainability objectives without costly
token-level annotation. Experiments show that our method out-
performs state-of-the-art approaches for this task. We further
integrate our approach into GoalSpotter, an existing sustain-
ability objective detection system, to demonstrate its significant
post-deployment impact in real-world business applications.
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1 Introduction

Sustainable development is crucial for ensuring that current and
future generations can thrive by balancing economic growth,
social equity, and environmental protection. In 2015, the United
Nations adopted the 2030 agenda to call for global cooperation
in achieving 17 sustainable development goals, such as ending
poverty, reducing inequality, and combating climate change [30].
As a result, sustainability strategies and corporate perfor-
mance have become more important than ever for the public [8,
29]. Various stakeholders (e.g., investors, consumers, and policy-
makers) push companies to disclose their environmental/social
information transparently [5]. Analyzing the published sustain-
ability reports allows sustainability experts to evaluate compa-
nies’ performance and spot greenwashing, which is the act of
misleading the public with respect to the environmental practices
of a company or environmental benefits of a product/service [8].
To this end, domain experts need to extract and fact-check the
sustainability claims of companies over time to make sure they
are delivering their previously promised goals [14, 15].
Traditionally, domain experts read and analyze sustainability
reports of companies manually. In particular, they extract key
information from numerous lengthy sustainability reports and
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store it in structured databases. This process enables them to
compare companies in terms of their sustainability goals, track
their progress toward these goals, and evaluate their overall
sustainability strategies and performance. Naturally, this manual
inspection process is not scalable in the big data era [14, 31].

Automatic processing of sustainability reports is therefore
an emerging need. Recent research shows that some aspects of
this challenging problem, such as detecting sustainability objec-
tives, can be effectively automated. We have already developed
GoalSpotter [14] that is a sustainability objective detection sys-
tem. It fine-tunes transformer models to filter out text blocks in
sustainability reports that contain objectives. However, although
GoalSpotter identifies sustainability objectives, it cannot extract
their key details in a structured format suitable for databases
with predefined fields.

In this paper, we focus on the problem of extracting key infor-
mation from sustainability objectives. We formulate this problem
as an information extraction task, using weak supervision to
identify key details from each sustainability objective without
requiring token-level annotations. In particular, we make the
following contributions.

e We introduce a weak supervision algorithm that converts
coarse, objective-level annotations into weak token-level
labels, enabling the creation of a labeled dataset for sustain-
ability detail extraction without costly expert token-level
annotation.

e We propose an information extraction system that lever-
ages these weak supervision signals to extract fine-grained
details from sustainability objectives. This new extraction
service is fully integrated into our previously developed
GoalSpotter system and is now publicly available online?.

e We extensively evaluate the effectiveness and efficiency of
our system in comparison to state-of-the-art sustainability
objective detail extraction approaches, demonstrating the
superiority of our system on various datasets.

e We deploy our system and report its post-deployment
impact in real-world business applications.

2 Foundations
2.1 Sustainability Reports

Sustainability reporting is the process of disclosing companies’
sustainability information. Different stakeholders (e.g., investors,
consumers, and policymakers) demand these sustainability re-
ports to assess the performance/strategies of companies in terms
of their environmental and social impacts [5]. Examples of sus-
tainability documents are CSR (Corporate Social Responsibility)
and ESG (Environmental, Social, and Corporate Governance)
reports [5, 17].

Example 1 (Sustainability reports). For example, Figure 1
shows a small snippet from a long sustainability report. O

!https://github.com/Ferris-Solutions/goalspotter_public
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Table 1: A few sustainability objectives and their annotated details.

Sustainability Objective Action Amount Qualifier Baseline Deadline
We co-founded The Climate Pledge, a commitment to reach net-zero carbon by 2040. reach net-zero carbon 2040
Restore 100% of our global water use by 2025. Restore 100% global water use 2025
Reduce energy consumption by 20% by 2025 (baseline 2017). Reduce 20% energy consumption 2017 2025

Climate change is one of the world’s great- We co-founded The Cli-
est crises, and to address it, the public and mate Pledge, a commit-

private sectors need to act together. ment to reach net-zero
carbon by 2040.

emissions from new building construction.

Reducing carbon emissions in transportation is a complex challenge for
many companies. Businesses also face the challenge of removing carbon

Detected Sustainability Objectives:
“We co-founded The Climate Pledge, a commitment to reach net-zero
carbon by 2040.”

Figure 1: A small snippet from a sustainability report.
GoalSpotter detects the text block that contains an envi-
ronmental claim.

2.2 Sustainability Objectives

A key part of any sustainability report is the sustainability goals
of the company, which should be effectively communicated to
business stakeholders [19]. Through these goals, companies aim
to reach specific sustainability targets by adapting their strategies.
Sustainability objectives are specific claims intended to achieve
broader sustainability goals. These objectives typically include
the following components:
e Action is a verb describing the nature of the intended
change.
e Amount is a relative or absolute value specifying the
magnitude and unit of the change.
e Qualifier is a short phrase that provides additional context
to the amount value.
o Baseline is the date when the change process began.
e Deadline is the date by which the change is expected to
be completed.

Example 2 (Sustainability objectives). For example, Table 1
shows a few sustainability objectives and their annotated details.
O

2.3 Sustainability Objective Detection

Previous research has shown that the sustainability objective
detection problem can be formulated as a text classification task,
where text blocks within reports are classified into objective
and noise classes [14]. GoalSpotter [14] is one such system that
detects sustainability objectives in sustainability reports.

Example 3 (Sustainability objective detection). For example,
as Figure 1 shows, GoalSpotter detects the bold text block as a
sustainability objective. O

2.4 Problem Formulation

To further automate the evaluation of sustainability objectives,
we aim to extract their key details from detected objectives and
store them in structured databases. Suppose O = {01, 02, . . ., 0|0] }
is a set of historical sustainability objectives. Let V; = {vaction,
Uamounts Uqualifier> Ubaseline» z)deadline} be the set of annotated details
for the sustainability objective o0;. Given a new sustainability

objective opeyw, the problem is to automatically extract the details
of the given sustainability objective, i.e., View = {Vaction Yamount>
Uqualifier> Ubaseline» Udeadline}~

Automatically extracting structured details from sustainability
objectives provides several practical benefits. While the full objec-
tive text is always needed for complete interpretation, represent-
ing key components, such as Action, Amount, Qualifier, Baseline,
and Deadline, in a structured form enables more efficient index-
ing, filtering, and partial comparison across large collections of
objectives. In particular, fields like Baseline and Deadline allow
tracking progress over time and monitoring whether companies
fulfill their stated commitments. Moreover, this structured rep-
resentation lays the foundation for future extensions, such as
normalization or categorization of actions and amounts, which
could support more fine-grained analysis and benchmarking
across companies.

Example 4 (Sustainability objective detail extraction). For
example, given the detected sustainability objectives in Table 1,
the goal is to extract their key details, namely action, amount,
qualifier, baseline, and deadline. O

3 Automatic Detail Extraction

3.1 System Overview

Figure 2 illustrates the workflow of our system for extracting key
details from sustainability objectives. Given a collection of de-
tected objectives, the system extracts their relevant information
using a two-phase process: a development phase (purple) and a
production phase (blue).

The development phase focuses on training a sustainability
detail extraction model using weak supervision. In step 1, the
system tokenizes the texts of sustainability objectives along with
the corresponding domain expert annotations to generate to-
ken sequences. In step 2, the token sequences of objectives and
annotations are aligned to assign weak token-level labels, iden-
tifying tokens that correspond to key details. Finally, in step 3,
the weakly labeled token sequences are used to fine-tune a trans-
former model, enabling it to learn from partial supervision rather
than requiring full token-level annotations.

The production phase applies the trained model to extract
details from new sustainability objectives. In step 1, the text
of a new objective is tokenized into sequences. In step 2, the
fine-tuned transformer model predicts a label for each token,
determining whether it represents a key detail. This workflow
demonstrates how weak supervision allows effective training of
sequence-labeling models with minimal annotation effort.

3.2 Weakly Supervised Token Labeling

Information extraction models require standard datasets, such
as CONLL-2003 [25], which are labeled at the token level. In
these datasets, each token is annotated with a label in a standard
format, such as IOB that marks the beginning (B), inside (I), and
outside (O) of each entity type.
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Figure 2: The workflow of our system.

Table 2: An example of a token-level labeled sentence.

Token Label
Albert B-PER
Einstein I-PER
was o
born O
in o
Germany B-LOC
O

‘ We co-founded The Climate Pledge, a commitment to reach net-zero carbon by 2040. ‘

Annotated Key Details: {"Action": "reach”, "Amount": "net-zero", "Qualifier": "carbon", "Base-
line": "", "Deadline": "2040"}

Figure 3: An annotated training sustainability objective.

Example 5 (Token-level labels). For example, Table 2 shows
a short sentence from the CONLL-2003 dataset [25], where each
token is labeled in IOB format. O

Such a token-level labeling process is time-consuming and
not scalable in the sustainability domain, where domain experts
deal with thousands of heterogeneous sustainability reports ev-
ery day [14]. That is why the input sustainability objectives to
our system are only partially annotated per training instance.
That is, each input training sustainability objective might have
some annotated key-value pairs that show which key details are
mentioned in the given training instance.

Example 6 (Sustainability objective-level annotations). For
example, Figure 3 shows a short sustainability objective, which
is annotated with some key-value pairs. Note that in real-world
data, the sustainability objective might be much longer and the
annotations might not contain all key details. O

Therefore, we design a weak supervision [22] algorithm that
converts coarse sustainability objective-level annotations into
token-level labels, enabling sequence labeling models to be trained
from partial supervision [3]. As shown in Algorithm 1, given a
sustainability objective o, the input text is first tokenized into
a sequence of tokens T = [t,..., tj7|]. Initially, all tokens in T
are weakly labeled as 'O’ (i.e., outside), producing L = [O, ..., O]
where |L| = |T|. For each annotated key-value pair associated
with objective o, the value v is tokenized into a sequence of tokens
U = [uy,...,ujy|]. The algorithm then searches for the starting
position s of the tokenized substring U within T. If a match is
found, the corresponding tokens in T are assigned IOB-style
weak labels: the first token of U is labeled as B-k (the beginning
of entity type k), while the remaining tokens are labeled as I-k
(the inside of entity type k). This procedure produces token-level

Algorithm 1: WeakSupervisionTokenLabeling(o, A)

Input: sustainability objective o, set of annotated details A.
Output: list of weak token labels L.

fori«— 1to|U| - 1do
L L[s +i] « I-k (weak label);

1 T « tokenize the sustainability objective o into [#1,..., ¢ ];

2 L « initialize weak token labels to O, ..., 0], where |L| = |T|;
3 foreach (k,v) in annotation set A do

4 U « tokenize the annotation value v into [ug, ..., uy| 1
5 s « find an index s in T where T[s : s + |U|] = U;

6 if s # —1 then

7

8

9

L L[s] « B-k (weak label);

10 return L as weak supervision signals;

Table 3: The weakly supervised token-labeling algorithm
converts objective-level annotations into token-level labels
for each sustainability objective.

Annotated Key Details:
{"Action": "reach”, "Amount": "net-zero", "Qualifier": "carbon", "Baseline": "", "Deadline": "2040"}

Token Label

We O

co (¢}

- (¢}

founded (@)

The (@)

Climate (¢)

Pledge (¢)

s (¢}

a (¢}
commitment O

to (6]

reach B-Action
net B-Amount
- I-Amount
zero I-Amount
carbon B-Qualifier
by o

2040 B-Deadline
. O

supervision consistent with the coarse objective-level annota-
tions, effectively transforming partial labels into sequence-level
training signals. In this sense, our method works as a form of
weak supervision and partial label learning [3, 22], where inex-
pensive coarse annotations are leveraged to train fine-grained
sequence models.

Example 7 (Weak supervision token labeling algorithm).
For example, Table 3 shows the output of the weak supervision
token labeling algorithm for the short annotated sustainability
objective in Figure 3. Using the key-value annotations at the
objective level, the algorithm assigns a label to each token of the
sustainability objective. O
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In real-world sustainability reports, objectives are often noisy,
incomplete, and heterogeneous, reflecting differences in report-
ing styles, terminology, and levels of detail across organizations.
Our workflow is designed to operate under these realistic condi-
tions by relying on partial, objective-level annotations and weak
supervision, rather than assuming complete or clean token-level
labels. Following the preprocessing strategy used in GoalSpot-
ter [14], we normalize input texts and remove unnecessary char-
acters to reduce superficial noise. We then apply standard sub-
word tokenization mechanisms provided by modern transformer
encoders, such as Byte-Pair Encoding [27], which represent the
state-of-the-art in many natural language processing tasks and
offer robustness to rare words, morphological variation, and
domain-specific terminology.

3.3 Sequence Labeling

Once the weakly supervised token-labeled dataset is constructed
for the sustainability detail extraction task, we train a sequence-
labeling model. We fine-tune transformer-based encoders for
this task, where the model learns to assign token labels using
contextual information while being trained on weak supervision
signals.

As shown in our experiments, we systematically evaluate the
impact of different transformer architectures and hyperparam-
eters on extraction performance. In the default configuration
of our prototype, we fine-tune a RoBERTa model on the weakly
labeled dataset for up to 10 epochs, with a learning rate of 5e-5, a
batch size of 16, and the Adam optimizer. These hyperparameters
were selected based on validation performance and are consistent
with common practices for transformer-based sequence labeling.
This setup demonstrates that effective sequence models can be
trained even when only partial supervision is available, avoiding
the need for costly token-level expert annotations.

4 Evaluation
Our experiments aim to answer the following research questions.

e How does our system compare to the existing sustainabil-
ity objective detail extraction approaches?

e How do our design decisions, including data preprocessing,
model selection, and hyperparameter tuning, affect the
system performance?

We first introduce our experimental setting and then detail
our experiments.

4.1 Setup
Dataset. We evaluate our system on 2 datasets.

o NetZeroFacts [32] is a climate goal extraction dataset con-
taining > 14000 passages from climate-related business
reports. We have extracted 599 sentences from these emis-
sion goal passages, each of which is annotated with at
least one label, such as target value, reference year, and
target year. We use this dataset to evaluate our system
based on recent benchmarks.

o Sustainability Goals is our own proprietary dataset con-
taining 1106 sustainability objectives. Each sustainability
objective is annotated with 5 key fields, including Action,
Amount, Qualifier, Baseline, and Deadline. To create this
dataset, we collected 718 sustainability reports from 422
companies. Domain experts identified a few sustainability
objectives in each report and annotated them with the
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above-mentioned key information. We use this highly het-
erogeneous and imbalanced dataset to evaluate our system
in challenging real-world scenarios.

Baselines. We compare our system to 3 baseline approaches.

o Conditional random fields is a traditional statistical model
that has been applied to information extraction tasks [20].
We train this model with token-level lexical, orthographic,
and contextual features to assess the performance of tradi-
tional approaches on modern information extraction tasks,
such as sustainability objective detail extraction.
Zero-shot prompting is a technique in which a large lan-
guage model is asked to extract key information from
sustainability reports without task-specific examples [9].
Similarly, we prompt the open-weight Llama 4 109B to
extract key details from our sustainability objectives. We
implement this baseline to check the performance of zero-
shot learning approaches for the sustainability objective
detail extraction tasks.

Few-shot prompting technique requires the prompt to in-
clude some input-output example instructions [32]. There-
fore, in accordance with previous research [32], our prompts
here to Llama 4 109B include three input sustainability
objectives and the desired output extracted details. This
way, we evaluate the performance of few-shot learning ap-
proaches for the sustainability objective detail extraction
tasks.

Evaluation measures. We leverage the typical Precision, Recall,
and F;-Score to measure the effectiveness of the information

extraction approaches. Formally, Precision = = Recall =

TP+FP>

%, and F; = %m, where true positive (TP) is the
number of times the approach correctly extracted the information
that was actually present, false positive (FP) is the number of
times the approach incorrectly extracted information that was or
was not actually present, and false negative (FN) is the number of
times the approach failed to extract information that was actually
present. All evaluation metrics are measured on an unseen test
set, which forms 20% of the original dataset. For each evaluation
measure, we report the mean of 5 independent runs. For the sake
of readability, we omit the standard errors as they are always
small numbers close to zero (< 1%).

We also report the training/fine-tuning and inference time in
minutes to evaluate the efficiency. We run the experiments on an
Ubuntu 18.04 LTS machine with 64 2.5 GHz CPU cores, 256 GB
memory, and an NVIDIA RTX A500 4 GB GPU.

4.2 Comparison with the Baselines

We compare the effectiveness and efficiency of GoalSpotter (which
is equipped with our detail extraction approach) with all the
baselines in Table 4. GoalSpotter outperforms all the baselines
in terms of F; score across all the datasets. This demonstrates
the value of our weakly supervised token labeling algorithm and
careful model fine-tuning, enabling the model to learn effectively
from partial annotations across diverse sustainability objectives.
We also observe that our lightweight system, which requires
only a few minutes to fine-tune a transformer model, outperforms
massive pretrained large language models like Llama 4 109B. This
underscores that, with well-designed preprocessing and weak su-
pervision techniques like our token labeling algorithm, complex
information extraction tasks can be performed effectively and
efficiently without relying on extremely large models.
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Figure 4: System effectiveness with different internal design decisions on the Sustainability Goals dataset.

Table 4: System effectiveness and efficiency in comparison
to the baselines. Time is measured in minutes.

NetZeroFacts
P R F

0.64  0.59 0.61
0.63  0.65 0.64
070  0.94 0.80

Sustainability Goals
| T | P R F | T
<1
7
7

Approach

0.60  0.86 0.71
0.71 0.86 0.78
0.81 0.96 0.88

<1
13
13

Conditional Random Fields
Zero-Shot Prompting
Few-Shot Prompting

GoalSpotter | 087 08 085 | 2 | 089 095 092 | 3

4.3 Experiments on Internal Design Decisions

We analyze the effect of the most important design decisions on
the effectiveness of our sustainability objective detail extraction
system. Figure 4 shows the results of the corresponding experi-
ments with target labels, model selection, and hyperparameters
on the Sustainability Goals dataset.

The effect of the target label. As shown in Figure 4, the ef-
fectiveness of our system on different target labels could vary
slightly due to the available amount of labeled data. Our sys-
tem can achieve a very high F; score in extracting Action of
the sustainability objective because this annotated information
is available for 85% of the data points. On the other hand, our
system achieves a lower F; score when extracting more specific
target labels, such as Baseline and Deadline, since these labels
are present in only 14% and 34% of the annotated sustainability
objectives, respectively.

The effect of the transformer model. As shown in Figure 4,
RoBERTa models achieve slightly higher F; scores than BERT
models. Furthermore, the original versions of these models per-
form slightly better than their distilled versions as expected. This
is due to the fact that distilled versions of transformer models are
designed to be smaller, faster, and more efficient while achieving
almost the same effectiveness as the original model. By default,
we use a RoBERTa model as it achieves the best effectiveness with
an acceptable fine-tuning speed.

The effect of the number of epochs and learning rate. As
shown in Figure 4, the number of epochs and learning rate do
not affect the model convergence speed significantly if they are
chosen from their typical ranges. By setting the learning rate to
5e — 5, our model achieves its highest F; score in a few, i.e., 10,
epochs.

Table 5: Summary of post-deployment data.

Company ‘ #Documents ‘ #Pages ‘ #Extracted Objectives

C1 20 2131 150
C2 18 3172 642
C3 41 3560 447
C4 19 2488 102
Cs 17 1298 113
Ceé 29 3278 343
Cc7 23 2208 247
C8 22 5012 764
C9 64 4791 379
C10 16 1202 79

C11 17 1229 95

C12 64 1721 71

C13 18 3250 105
C14 12 2531 43

Total 380 37871 3580

5 Deployment and Demonstration

We demonstrate the post-deployment impact of our detail ex-
traction system for sustainability objectives across two practical
scenarios, followed by a brief discussion of the observed results.

5.1 Scenario 1: Detail Extraction from Top
Companies’ Sustainability Objectives

In our prior research, we have shown how our sustainability
objective detection system, GoalSpotter, has been successfully
deployed in industry [14]. We deployed GoalSpotter in Ferris
Solutions?, which is a Switzerland-based company focusing on
building artificial intelligence solutions for sustainability prob-
lems. In short, we ran GoalSpotter on 380 sustainability reports
from 14 companies with 37,871 pages and extracted 3,580 sus-
tainability objectives. Table 5 shows the summary of our post-
deployment data. We reported the top 2 extracted sustainability
objectives per company in our prior research [14].

We have now integrated our new detail extraction service
into our previously developed GoalSpotter system to additionally
extract details of these already detected sustainability objectives
and store them in structured databases. Table 6 shows the ex-
tended results from our previous paper, including the details
that our system extracts from the same top two sustainability
objectives per company.

We observe that our detail extraction approach effectively
extracts details of sustainability objectives across various compa-
nies and data domains. These results again showcase the effec-
tiveness of our system on new real-world, heterogeneous data.

https://www.ferris.ai
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Table 6: The extracted details for the top 2 sustainability objectives per company from the post-deployment data.

Company ‘ Sustainability Objective ‘ Action Amount Qualifier Baseline Deadline

C1 Integrate sustainability information into their reporting cycle Integrate reporting cycle

C1 Voluntary turnover rate in 2021: 8.1% 8.1% Voluntary turnover rate

C2 Substitute F-gases for low GWP alternatives Substitute F-gases

C2 Commitments to double environmental efficiency with new energy, | Commitments double environmental efficiency
water and waste targets

C3 We are committed to empowering 100 million smallholder farmers in | empowering 100 million smallholder farmers
low to middle

C3 Transition all Consumer Health products to 100% recyclable or reusable | Transition 100% Consumer Health
packaging

C4 Explore innovative value-based approaches Explore value-based approaches

C4 Reduce employees’ risk of a serious incident or fatality Reduce risk of a serious incident or fatality

C5 Expand principles of sustainability and performance indicators at key | Expand principles of sustainability and per-
suppliers formance indicators

C5 250 students in STEM awareness activities 250 students in STEM awareness activi-

ties

C6 Define sustainability strategies, goals and policies in consultation with | Define sustainability strategies, goals and
key stakeholders policies

C6 Join industry peers, UN entities and/or other stakeholders in initiatives | Join common challenges and dilemmas
contributing to solving common challenges and dilemmas at the global
and/or local levels

C7 Uses 25 percent PCR content in bottle Uses 25 percent PCR content in bottle

C7 100 percent of major brands share product sustainability information 100 percent  major brands share product sustain-
on their websites ability information

Cc8 Promote the proportion of women in leadership positions at the com- | Promote proportion of women in leadership
pany positions at

C8 Perform waste audits to identify ways to reduce waste or increase | Perform waste
recycling efficiency

C9 Align strategies, goals and incentive structures of all business units and | Align all strategies, goals and incentive struc-
subsidiaries with corporate sustainability strategy tures

C9 Implement water saving programs at the top-10 sites with highest water | Implement water footprint and water scarcity
footprint and water scarcity

C10 Demonstrate added value of new products Demonstrate added value of new products

C10 Pursue leadership in HAEMOPHILIA Pursue

C11 Incorporate environmental sustainability across all aspects of our orga- | Incorporate  all environmental sustainability
nization

C11 Integrate immunization delivery and family planning services in an | Integrate immunization delivery and family
effort planning services

C12 30% increase in the representation of women in key leadership roles increase 30% representation of women in key

leadership roles

C12 Reached goal of 20% of women in key positions a year ahead of schedule | Reached 20% women in key positions

C13 By 2025: priority sites located near sensitive natural areas shall imple- | implement biodiversity protection 2025
ment a biodiversity protection

C13 By 2025, pilot projects will be implemented for promoting further the | will be im- sustainable use 2025
sustainable use and responsible plemented

C14 Share high-quality medical resources, provide material and technical | Share medical resource
support to poor areas

C14 Make monthly contributions to the schemes at approximately 7% to | Make 7% monthly contributions
10% of the relevant income

Domain experts store these structured data in databases to com-
pare different target companies, monitor their progress toward
their sustainability goals, and evaluate companies in terms of
their sustainability performance. In particular, they can see in the
table that companies, such as C12 and C13, are more specific in
terms of indicating the exact amount of change and the timeline
of their sustainability objectives than the other companies. At the
same time, these specific facts and figures can be monitored over
time to measure the fidelity of the companies to their previously
claimed sustainability objectives.

5.2 Scenario 2: Detail Extraction from a Single
Sustainability Report

We also demonstrate how our detail extraction approach works
in a more microscopic scenario, where we analyze one specific
sustainability report in detail. We ran GoalSpotter on a single
sustainability report to first detect its objectives and then extract
their corresponding details, organizing all extracted information
into a structured table. Table 7 shows the results for the top
sustainability objectives identified in this report.

We observe that our system can effectively extract fine-grained
details even when operating on a single document with dense
and varied sustainability content. In particular, the extracted de-
tails provide a clearer understanding of the company’s commit-
ments, the specificity of its planned actions, and the quantitative
measures it sets for its sustainability goals. This scenario illus-
trates that GoalSpotter is not only capable of handling large-scale,
multi-company datasets but also performs robustly in focused,
report-level analyses. Such document-level insights enable do-
main experts to perform deeper assessments, verify company
claims more precisely, and track the evolution of individual sus-
tainability objectives over time.

5.3 Discussion

Overall, the deployment results demonstrate that our approach re-
liably extracts meaningful structured details from real-world sus-
tainability objectives across diverse companies, reporting styles,
and data domains. The resulting structured information enables
large-scale indexing, comparison, and monitoring of sustainabil-
ity commitments, highlighting the practical utility of our method
in post-deployment settings.
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Table 7: The extracted details from an example sustainability report.

Sustainability Objective ‘ Action Amount Qualifier Baseline  Deadline
Reduce single-use beverages per seated headcount by 20% relative. Reduce 20% single-use beverages per seated headcount

Keep products and materials in use, and promote healthy materials and safe. Keep products and materials

Achieve Zero Waste to Landfill for our global data center operations. Achieve Zero Waste to Landfill

10% at our Bay Area headquarters achieving a 15% reduction in landfill waste. reduction 10% landfill waste

Reduce potable water intensity at our Bay Area headquarters by 5% by the end of 2019, against | Reduce 5% potable water intensity 2017 2019

a 2017 baseline.

By 2023, we will install 1 million energy- and money-saving thermostats in homes that need | will install 1 million energy- and money-saving thermostats 2023

them most.

At the same time, the results also reveal several expected limi-
tations when operating on noisy and heterogeneous real-world
data. As shown in Tables 6 and 7, some extracted records re-
main incomplete, which is largely due to the fact that many
sustainability objectives omit certain details (e.g., Baselines or
Deadlines) or express them implicitly. In addition, objectives that
contain multiple actions or targets within a single sentence may
partially confuse the extraction model, leading to missing or frag-
mented outputs. Finally, our current implementation relies on
exact token-level matching between annotations and sustainabil-
ity objectives, which limits its ability to capture semantically
equivalent but lexically different expressions.

Despite these limitations, the extracted structured informa-
tion remains valuable for large-scale analysis and monitoring,
and these observations point to natural directions for future im-
provements, such as objective segmentation, fuzzy matching, and
semantic normalization.

6 Related Work
6.1 Sustainability Objective Detection

Sustainability objective detection aims to identify environmental
and social claims of companies, such as “we will reach net-zero
carbon by 20407, in their sustainability reports [14]. Existing
approaches typically formulate this as either a text classifica-
tion [14, 28, 31] or text retrieval [2, 7, 21, 32] tasks.

In both task formulations, the sustainability reports are seg-

mented into smaller text units, such as text blocks [7, 14], tweets [31],

sentences [2, 28], or passages [32]. In the text classification for-
mulation, each text unit is annotated with labels, such as sus-
tainability objective or noise. Therefore, a classifier, which is
usually a transformer model such as RoBERTa [14, 28, 31], learns
to identify sustainability objectives. On the other hand, in the
text retrieval formulation, the text units are ranked based on their
sustainability objective score [2, 7, 32], which represents the key-
word/embedding similarity of the text units to some predefined
sustainability queries.

Sustainability objective detection is an upstream orthogonal
step to our detail extraction task. In fact, any of the above ap-
proaches can be first run on the sustainability reports to detect
sustainability objectives. Our system can use the outputs of any
of these approaches as input to extract detailed information.

6.2 Detail Extraction from Sustainability
Objectives

Once the sustainability objectives are identified, the detail ex-
traction task extracts the key information from text units to
store them in a structured way. Existing solutions can be catego-
rized into rule-based [6], zero-shot prompting [9], and few-shot
prompting [2, 32] approaches.

Rule-based approaches rely on user-provided configuration to
extract key information from sustainability reports. easlE [6] is a

rule-based semi-automatic framework that extracts sustainability
metrics from CSR reports of the companies on the web. It requires
the user to provide a configuration file, specifying a CSS selector
that points the system to the set of HTML elements that contain
the target information [6]. In contrast, our system does not need
any given rule as it learns to automatically extract details of
sustainability objectives.

In the zero-shot prompting, a large language model, such as
GPT-4, analyzes the sustainability reports directly in PDF format
to extract key information without being given task-specific
instructions [9]. Prior research shows that this approach can be
inferior even compared to simple keyword-based search methods,
which involve searching for key details using keywords [9]. These
results motivate our approach that fine-tunes transformer models
for the detail extraction task.

In the few-shot prompting, a large language model, such as
GPT-3.5-turbo [32], is instructed with a few input-output exam-
ples to extract key details from given sustainability objectives.
This key information could contain the objective category (e.g.,
“waste”), predicate (e.g., “investment in”), object (e.g., “cutting-
edge recycling technologies”) [2], change percentage (e.g., 10%),
target year (e.g., 2030), and reference year (e.g., 2020) [32]. This
extracted information is then stored in a knowledge base [2, 32].
The learning capacity of large language models in the few-shot
learning scenarios is limited as only a few input-output examples
can be used to instruct the model. As a result, existing few-shot
learning approaches can only extract details of a narrow category
of sustainability objectives, such as only carbon emission [32],
only climate [13], or only energy consumption [11] objectives.

In contrast, our fine-tuned model systematically learns to ex-
tract details of any category of sustainability objectives in various
domains without requiring any predefined rules. That is why
our system significantly outperforms zero/few-shot learning ap-
proaches, as shown in the experiments.

6.3 Information Extraction

Information extraction is the task of extracting structured key
information from unstructured text [4], such as keyphrases [16],
named entities [1], relationships [18], and events [33].

Existing techniques can be divided into three categories: (1)
rule-based, (2) machine learning-based, and (3) deep learning-
based approaches [34]. Rule-based methods require domain ex-
perts to design and maintain regular expressions, templates, or
dictionaries [12]. Machine learning-based approaches rely on
token labels (e.g., B-PER, I-PER, O) to train traditional sequence
models, such as hidden Markov models [26] or conditional ran-
dom fields [20]. Deep learning methods train models like trans-
formers, whose learning and generalization capabilities surpass
traditional approaches [34].

We adopt a deep learning approach using state-of-the-art trans-
formers to classify sentence tokens into multiple classes.
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6.4 Weakly Supervised Token Labeling

Existing research has mainly focused on joint learning of sen-
tence and token labels. In zero-shot sequence labeling, token-
level labels are inferred from a sentence classification model [23],
enabling joint learning of sentence and token labels [10, 24]. A
modified attention mechanism can also highlight key words as a
proxy for token labeling [23, 24].

However, these approaches do not address scenarios where
only coarse, instance-level annotations are available. In our task,
domain experts provide annotations at the objective level rather
than the token level. To leverage these partial annotations, we
design a weakly supervised token labeling algorithm that con-
verts objective-level labels into token-level supervision signals.
Our method follows principles from weak supervision and partial
label learning [3, 22], using coarse annotations as noisy signals
to train sequence models effectively without requiring full token-
level labels.

7 Conclusion

We propose a novel approach for automatically extracting key de-
tails from sustainability objectives using weak supervision. Our
method tokenizes input text, applies a weakly supervised token-
labeling algorithm to generate token-level labels from coarse
annotations, and fine-tunes a transformer model for sequence la-
beling. Experimental results show that our approach outperforms
state-of-the-art methods in sustainability objective detail extrac-
tion. We integrate our approach into GoalSpotter and demon-
strate its post-deployment effectiveness in extracting structured
details from diverse, heterogeneous data.

Future work will explore incorporating visual elements from
sustainability reports, better handling of complex objectives, and
enabling fuzzy matching to enhance extraction completeness and
robustness.
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