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Abstract

Data cleaning is one of the most important but time-consuming tasks for data scientists. The
data cleaning task consists of two major steps: (1) error detection and (2) error correction. The
goal of error detection is to identify wrong data values. The goal of error correction is to fix
these wrong values. Data cleaning is a challenging task due to the trade-off among correctness,
completeness, and automation. In fact, detecting/correcting all data errors accurately without
any user involvement is not possible for every dataset.
We propose a novel data cleaning approach that detects/corrects data errors with a novel two-
step task formulation. The intuition is that, by collecting a set of base error detectors/correctors
that can independently mark/fix data errors, we can learn to combine them into a final
set of data errors/corrections using a few informative user labels. First, each base error
detector/corrector generates an initial set of potential data errors/corrections. Then, the
approach ensembles the output of these base error detectors/correctors into one final set of
data errors/corrections in a semi-supervised manner. In fact, the approach iteratively asks
the user to annotate a tuple, i.e., marking/fixing a few data errors. The approach learns to
generalize the user-provided error detection/correction examples to the rest of the dataset,
accordingly.
Our novel two-step formulation of the error detection/correction task has four benefits. First,
the approach is configuration free and does not need any user-provided rules or parameters.
In fact, the approach considers the base error detectors/correctors as black-box algorithms
that are not necessarily correct or complete. Second, the approach is effective in the error
detection/correction task as its first and second steps maximize recall and precision, respectively.
Third, the approach also minimizes human involvement as it samples the most informative
tuples of the dataset for user labeling. Fourth, the task formulation of our approach allows us
to leverage previous data cleaning efforts to optimize the current data cleaning task.
We design an end-to-end data cleaning pipeline according to this approach that takes a dirty
dataset as input and outputs a cleaned dataset. Our pipeline leverages user feedback, a set
of data cleaning algorithms, and a set of previously cleaned datasets, if available. Internally,
our pipeline consists of an error detection system (named Raha), an error correction system
(named Baran), and a transfer learning engine.
As our extensive experiments show, our data cleaning systems are effective and efficient, and
involve the user minimally. Raha and Baran significantly outperform existing data cleaning
approaches in terms of effectiveness and human involvement on multiple well-known datasets.





Zusammenfassung

Die Datenbereinigung ist eine der wichtigsten, aber zeitraubendsten Aufgaben für Datenwissen-
schaftler. Die Datenbereinigungsaufgabe besteht aus zwei Hauptschritten: (1) Fehlererkennung
und (2) Fehlerkorrektur. Das Ziel der Fehlererkennung ist es, falsche Datenwerte zu identifizieren.
Das Ziel der Fehlerkorrektur ist es, diese falschen Werte in korrekte Werte zu korrigieren.
Die Datenbereinigung ist eine anspruchsvolle Aufgabe aufgrund des Kompromisses zwischen
Korrektheit, Vollständigkeit und Automatisierung. Tatsächlich ist es nicht für jeden Datensatz
möglich, alle Datenfehler ohne Beteiligung des Benutzers genau zu erkennen und zu korrigieren.
Wir schlagen einen neuartigen Datenbereinigungsansatz vor, der Datenfehler mit einer
neuartigen zweistufigen Aufgabenformulierung entdeckt/korrigiert. Die Intuition ist, dass
wir durch das Sammeln eines Menge von Basisfehler-Detektoren/Korrektoren, die Datenfehler
unabhängig voneinander markieren/beheben können, lernen können, sie mit Hilfe einiger
informativer Benutzerannotationen zu einem endgültigen Satz von Datenfehlern/Korrekturen
zu kombinieren. Zunächst erzeugt jeder Basisfehler-Detektor/Korrektor einen ersten Satz
potenzieller Datenfehler/Korrekturen. Dann fasst der Ansatz die Ausgabe dieser Basisfehler-
Detektoren/Korrektoren in einer halb-überwachten Weise zu einem endgültigen Satz von
Datenfehlern/Korrekturen zusammen. Tatsächlich fordert der Ansatz den Benutzer iterativ
auf, ein Tupel zu annotieren, d.h. einige wenige Datenfehler zu markieren/zu korrigieren. Der
Ansatz lernt, die vom Benutzer zur Verfügung gestellten Fehlererkennungs-/Korrekturbeispiele
entsprechend auf den Rest des Datensatzes zu zu generalisieren.
Unsere neuartige zweistufige Formulierung der Fehlererkennungs-/Fehlerkorrekturaufgabe
hat vier Vorteile. Erstens ist der Ansatz konfigurationsfrei und benötigt keine vom Benut-
zer bereitgestellten Regeln oder Parameter. Tatsächlich betrachtet der Ansatz die Basis-
Fehlerdetektoren/-korrektoren als Black-Box-Algorithmen, die nicht unbedingt korrekt oder
vollständig sind. Zweitens ist der Ansatz bei der Fehlererkennungs-/Fehlerkorrekturaufgabe
effektiv, da seine ersten und zweiten Schritte die Empfindlichkeit bzw. Genauigkeit maximieren.
Drittens minimiert der Ansatz auch die menschliche Beteiligung, da er die informativsten
Tupel des Datensatzes für die Benutzerbeschriftung auswählt. Viertens ermöglicht uns
die Aufgabenformulierung unseres Ansatzes, frühere Datenbereinigungsbemühungen zur
Optimierung der aktuellen Datenbereinigungsaufgabe zu nutzen.
Wir entwerfen nach diesem Ansatz eine End-to-End-Datenbereinigungs-Pipeline, die einen
fehlerhaften Datensatz als Eingabe nimmt und einen bereinigten Datensatz ausgibt. Unsere
Pipeline nutzt das Benutzer-Feedback, einen Satz von Datenbereinigungsalgorithmen und, falls
verfügbar, historische Daten. Intern besteht unsere Pipeline aus einem Fehlererkennungssystem
(namens Raha), einem Fehlerkorrektursystem (namens Baran) und einer Transferlernmaschine.
Wie unsere umfangreichen Experimente zeigen, sind unsere Datenbereinigungssysteme effektiv
und effizient und involvieren den Benutzer nur minimal. Raha und Baran übertreffen bestehende
Datenbereinigungsansätze in Bezug auf Wirksamkeit und menschliche Beteiligung bei mehreren
bekannten Datensätzen erheblich.
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1
Introduction

Data-driven science has been recognized as the fourth paradigm of science after experimental,
theoretical, and computational sciences [42]. Data-driven approaches are nowadays popular in
many diverse domains, such as healthcare [36], journalism [44], and energy management [97].
Traditionally, the experts of these domains made decisions based on their intuitions and
experiences. Alternatively, data-driven approaches extract knowledge and insights from
historical data to support decision makers in future decision making processes. This way,
business managers can run their business more effectively and efficiently using these decision
support systems [49].

Data science is an inter-disciplinary field of science that provides the knowledge and insights
for decision support systems [69]. Data science uses various theories and techniques drawn from
multiple fields, such as statistics, data mining, and machine learning, to extract knowledge
and insights from raw data. A data science pipeline consists of multiple steps, such as data
collection, data preprocessing, data analysis, and data visualization.

The data preprocessing step is particularly responsible for preparing high quality data
for the rest of the data science pipeline through multiple tasks, such as data cleaning, data
transformation, and feature extraction [70]. Data preprocessing is important for data science
pipelines to avoid the “garbage in, garbage out” situation, where low quality input data
produces low quality output insights.

Working with the low quality datasets is nowadays inevitable. The integrated datasets
are usually dirty, i.e., contain erroneous values, because of various reasons, such as typos,
inconsistent handling of data, and extraction errors [72]. Processing these dirty datasets in
data science pipelines is hard as they are not directly usable for data analysis algorithms or
they can lead to wrong knowledge and insights. Therefore, we need to clean datasets in the
data preprocessing step to ensure that the quality of data is preserved.

1.1 Problem Overview: Data Cleaning

Data cleaning aims at improving data quality [72]. A data cleaning task consists of two major
steps: (1) error detection and (2) error correction (i.e., data repairing). The goal of error
detection is to identify data values that are wrong [2]. Error detection can be considered as a
binary classification task, where each data value is classified into two possible classes, namely
clean or dirty. The goal of error correction is to fix the wrong values [74]. Error correction is a
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more challenging step as the space of possible correction candidates is infinite. In fact, any
possible string could theoretically be a correction candidate for an erroneous value.

Data cleaning is particularly one of the most important but time-consuming tasks of data
scientists [27] as they spend 60% of their time on this task [25]. Most data cleaning tasks
need to incorporate human supervision because the desired data curation might be use-case
dependent or subjective. That is why the data cleaning process involves the user in multiple
forms of human supervision, such as providing integrity rules, setting statistical parameters,
and annotating data values.

1.2 Previous Approaches: The Preconfiguration Paradigm

Existing data cleaning approaches are designed based on the preconfiguration paradigm, which
requires the user to provide the correct and complete set of integrity rules [22, 20], statistical
parameters [93], or both [74]. For example, a data cleaning system might need data patterns,
such as the date format “dd.mm.yyyy”, or statistical parameters, such as expected mean and
standard deviation.

The preconfiguration-based approaches suffer from two general limitations. First, they
need the user to provide these input configurations to clean the dataset, accordingly. Providing
the correct and complete set of rules and parameters upfront is a major impediment for most
non-expert users as they need to know both the dataset and the data cleaning system very
well to be able to configure the systems properly [2, 93]. Second, the performance of these
approaches heavily depends on the quality of the user-provided rules and parameters. In fact,
they cannot achieve high performance unless the user configures them properly for every given
dirty dataset.

1.3 Our Approach: The Configuration-Free Paradigm

We propose a novel configuration-free paradigm for data cleaning. This paradigm does not
require the user to provide any data- or approach-dependent configurations, such as integrity
rules or statistical parameters. Instead, our paradigm leverages human supervision in the form
of only a few annotated data values.

The configuration-free paradigm is more suitable for three scenarios.
1. The dataset is novel and its data constraints are unknown.

2. The user is a domain expert who is not adept at generating the right rules and parameters
for complex data cleaning systems.

3. In addition to providing rules and parameters, the user prefers to also annotate a
few data values to further improve the data cleaning performance. In this case, the
configuration-free paradigm complements the preconfiguration paradigm.

We design a novel configuration-free approach to detect/correct data errors. The intuition
is that, by collecting a set of base error detectors/correctors that can independently mark/fix
data errors, we can learn to combine them into a final set of data errors/corrections with a
few informative user labels. To this end, we need a set of base error detectors/correctors, a
representation method to combine them, a sampling method to select the most informative
data values for user labeling, and a learning task to generalize the user-provided error
detection/correction operations.

In a nutshell, our approach detects/corrects data errors with a novel two-step task
formulation. First, each base error detector/corrector generates an initial set of potential
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data errors/corrections. This step particularly increases the achievable recall bound of the
error detection/correction task. Then, the approach ensembles the output of these base error
detectors/correctors into one final set of data errors/corrections in a semi-supervised manner.
In fact, the approach iteratively asks the user to annotate a tuple, i.e., marking/fixing a few
data errors. The approach learns to generalize the user-provided error detection/correction
examples to the rest of the dataset, accordingly. This step particularly preserves high precision
of the error detection/correction task.

Our novel two-step formulation of the error detection/correction task has four benefits.
1. The approach is configuration free as it considers the base error detectors/correctors as

black-box algorithms that are not necessarily correct or complete. Therefore, the user
does not need to configure the base error detectors/correctors upfront.

2. The approach is effective in the error detection and correction tasks as its first and
second steps maximize recall and precision, respectively.

3. The approach also minimizes human involvement as it samples the most informative
tuples of the dataset for user labeling. That is why the performance of the approach
quickly converges with only a few user-provided labels.

4. The task formulation of our approach enables us to leverage historical data cleaning
efforts to optimize the current data cleaning task, according to transfer learning [62]. In
particular, we can estimate the effectiveness of the base error detectors on the current
dataset based on their effectiveness on previously cleaned datasets. Furthermore, we can
pretrain the base error correctors on previously cleaned datasets.

1.4 Challenges

We identified two general challenges and multiple subsequent research questions in designing
our data cleaning approach.

1.4.1 Optimizing All Data Cleaning Objectives

An ideal data cleaning approach has three main properties: (1) high effectiveness, (2) high
efficiency, and (3) low human involvement. The effectiveness itself consists of two sub-properties:
(i) being correct and (ii) being complete. Ideally, a data cleaning approach must detect and
correct all data errors (completeness) accurately (correctness) in a short time (efficiency) and
in an automated manner (human involvement). Although optimizing each of these objectives
alone is possible, optimizing all simultaneously is challenging due to the trade-off among them.

Our approach leverages a large set of base error detectors/correctors to clean as many data
errors as possible. This approach could create two issues. First, the runtime of the approach is
high as it has to run multiple base error detectors/correctors. Second, aggregating these base
error detectors/correctors into an accurate final result set is challenging as not all the base
algorithms are accurate. To address the first issue, we need to parallelize and prune base error
detectors/correctors without harming the result completeness. To address the second issue, we
need to design a learning task with minimal human supervision as simple aggregation functions,
such as majority voting of the base error detectors/correctors, will lead to false positives [2].
Overall, we need a sophisticated task formulation for data cleaning that maximizes precision
and recall and minimizes runtime and user involvement.

In particular, we need to address the following research questions:
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• How should we design a set of base error detectors/correctors that can theoretically
capture/fix data errors of any types? (Completeness)

• How should we parallelize and prune these base error detectors/correctors for a given
dataset to reduce the overall runtime? (Efficiency)

• How should we ensemble the output of these base error detectors/correctors to accurately
identify and fix data errors? (Correctness)

• How should we confine all user interventions to just a few tuple annotations and how to
find the most informative tuples? (Human involvement)

1.4.2 Transfer Learning on Heterogeneous Datasets

Learning from previous data cleaning experiences enables us to improve the performance of new
data cleaning tasks. However, the transfer learning process requires us to capture the similarity
of different data cleaning tasks. Two data cleaning tasks are similar if the input dirty datasets
to these two tasks are similar. Defining similarity of dirty datasets is not trivial because dirty
datasets could be heterogeneously different. Each dirty dataset could have different content,
structure, and quality that makes its comparison to other datasets challenging. Therefore, we
need to extract and transfer data cleaning knowledge between these heterogeneous datasets.

In particular, we need to answer the following research questions:
• How should we represent a dataset with automatically extractable and domain-

independent metadata that describe the dirtiness of the dataset?

• How should we leverage these metadata to define similarity between datasets in terms of
data quality issues and required data cleaning treatments?

• How should we leverage the similarity of the current dataset to previous historical
datasets to improve the performance of the current data cleaning task?

1.5 Solution Overview: The End-to-End Data Cleaning
Pipeline

We have designed an end-to-end data cleaning pipeline based on our two-step data cleaning
approach. Figure 1.1 illustrates the high-level architecture of our end-to-end data cleaning
pipeline. Given a dirty dataset as input, the goal is to detect and correct data errors and
output the cleaned dataset.

To this end, our pipeline leverages three auxiliary data cleaning resources: (1) the user
feedback, (2) a data cleaning toolbox, and (3) an optional historical data repository. The
user feedback in the form of a few identified and fixed data errors is the only required form
of supervision in our data cleaning pipeline. The data cleaning toolbox contains the set of
base error detector/corrector algorithms. Optionally, the user can further enrich this default
set of base error detectors/correctors with custom dataset-specific algorithms. The historical
data repository is an optional resource to boost the error detection/correction performance by
learning from previous data cleaning experiences on historical data.

Provided with these data cleaning resources, our end-to-end data cleaning pipeline consists
of three main components: (1) the error detection system (named Raha), (2) the error
correction system (named Baran), and (3) the transfer learning engine.

4



1.5 Solution Overview: The End-to-End Data Cleaning Pipeline
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Figure 1.1: The architecture of our end-to-end data cleaning pipeline.

1.5.1 Raha: The Error Detection System

Raha takes the dirty dataset and detects its data errors. Internally, Raha generates and runs a
large number of error detection strategies on the dirty dataset. These strategies represent the
four main families of traditional error detection algorithms, namely outlier detection, pattern
violation detection, rule violation detection, and knowledge base violation detection [2]. Raha
collects the output of these error detection strategies to featurize each data cell. The feature
vector of each data cell shows which error detection strategies have marked this particular
data cell as a data error. Next, Raha clusters data cells of each data column based on the
similarity of their feature vectors. Raha iteratively samples a set of tuples that cover as many
unlabeled clusters as possible and asks the user to label data cells of these sampled tuples as
dirty or clean. Raha propagates each user label to all data cells of the same cluster to boost
the number of labeled training data points. Finally, Raha trains one classifier per data column
to predict the final label of each data cell inside a data column.

1.5.2 Baran: The Error Correction System

Baran takes the dirty dataset with marked data errors and corrects its previously detected data
errors. Internally, Baran trains a set of error corrector models that leverage different contexts
of a data error to propose potential corrections. A data error context comprises the value
itself, the co-occurring values inside the same tuple, and all values that define the attribute
type. Each error corrector model proposes various potential corrections for each data error
based on its contexts. Baran featurizes each pair of a data error and a correction candidate by
representing the fitness of the correction candidate for the data error. Each component of this
feature vector corresponds to the confidence of one error corrector model for replacing the
data error with the correction candidate. Then, Baran iteratively samples a set of tuples that
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cover various data error types in different data columns and asks the user to fix the marked
data errors of these sampled tuples. Baran incrementally updates the error corrector models
with these new correction examples. Finally, Baran trains one classifier per data column to
predict the actual correction of each data error from the set of all correction candidates.

1.5.3 The Transfer Learning Engine

The transfer learning engine optionally leverages previous data cleaning experiences on historical
data to improve the error detection/correction performance of Raha/Baran on the current
dataset.

For Raha, the transfer learning engine filters out ineffective error detection strategies
to reduce the overall error detection runtime without harming the effectiveness of the error
detection process. In fact, the engine calculates the similarity of the current dataset with
previously cleaned historical datasets to estimate the effectiveness of error detection strategies
based on their effectiveness on similar historical datasets. This way, the engine identifies and
filters out the ineffective error detection strategies before Raha spends computational resources
to run them.

For Baran, the transfer learning engine pretrains error corrector models to reduce the
required dataset-specific user labels on the current dataset. To pretrain the models, the
engine extracts correction examples from any general-purpose revision data history, such
as the Wikipedia page revision history. Since these pretrained error corrector models learn
common typos and mistakes, such as wrong usage of the value “Holland” instead of the value
“Netherlands”, they generate many correction candidates for the current dataset. This prior
set of correction candidates improves the achievable recall bound of Baran.

1.6 Contributions

We make the following contributions:
• Novel two-step task formulation. We propose a novel two-step formulation for the

error detection and correction tasks, which is effective and efficient, and requires minimal
user involvement. Our approach is effective as its first and second steps maximize recall
and precision, respectively. Furthermore, our approach displays a competitive runtime
due to its parallelization and pruning techniques. Finally, our approach involves the
user minimally to annotate a few informative data values due to its effective feature
representation and tuple sampling method.

• Configuration-free data cleaning systems. We propose two new configuration-free
error detection and error correction systems, Raha and Baran. Our configuration-
free systems detect/correct data errors without requiring any user-provided data- or
system-dependent configurations.

• Comprehensive set of base error detectors and correctors. We propose a
comprehensive set of base error detectors and correctors that leverage all data error
contexts to detect and correct various data error types.

• Effective feature representations. We propose effective feature vectors for error
detection and correction tasks. In particular, each feature vector combines the output of
base error detectors/corrctors to represent data quality issues and required data cleaning
treatments.

• Tuple sampling methods. We propose two tuple sampling methods for the error
detection and correction tasks to sample the most informative tuples for user annotation.
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Our clustering-based sampling method clusters similar data cells, samples tuples that
cover unlabeled clusters, and propagates each user label through its corresponding cluster
to boost the number of labeled training data points. Our informativeness-based sampling
method samples those tuples whose erroneous data cells are more informative for the
classifier of underlabeled data columns.

• Transfer learning methods. We propose transfer leaning methods to learn from
previous data cleaning experiences on historical data. In particular, we estimate the
effectiveness of error detection strategies based on their effectiveness on similar historical
datasets. Furthermore, we pretrain value-based error corrector models based on the
extracted value-based corrections from the Wikipedia page revision history.

• Extensive experiments. We conducted extensive experiments to evaluate our
data cleaning systems in terms of effectiveness, efficiency, and human involvement.
As our experiments show, Raha and Baran significantly outperform 10 recent data
cleaning systems on 8 well-known datasets. Our experiments particularly show that
our two-step approach achieves high precision and recall together with low runtime
and user involvement. Furthermore, our experiments show that, the more base error
detectors/correctors we use, the higher performance our approach can achieve as we can
represent data errors/corrections more effectively.

1.7 Impact of Thesis Contributions

The impact of the thesis contributions consists of several research publications and open source
projects.

1.7.1 Research Publications

We have already published the research of this thesis in the following peer-reviewed publications:
1. Raha: A Configuration-Free Error Detection System [57]

Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden,
Mourad Ouzzani, Michael Stonebraker, and Nan Tang
SIGMOD 2019 (pages 865–882)
Note 1: This paper won the ACM SIGMOD most reproducible award.
Note 2: Mohammad Mahdavi, as the only PhD student among the co-authors, was
the main responsible person for designing the approach and the only responsible person
for conducting the experiments.

2. Baran: Effective Error Correction via a Unified Context Representation and
Transfer Learning [54]
Mohammad Mahdavi and Ziawasch Abedjan
PVLDB 2020 (pages 1948–1961)

3. REDS: Estimating the Performance of Error Detection Strategies Based on
Dirtiness Profiles [55]
Mohammad Mahdavi and Ziawasch Abedjan
SSDBM 2019 (pages 193–196)

4. Semi-Supervised Data Cleaning with Raha and Baran [56]
Mohammad Mahdavi and Ziawasch Abedjan
CIDR 2021
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Furthermore, the author also collaborated on the following peer-reviewed related
publications:

1. ED2: A Case for Active Learning in Error Detection [60]
Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan
CIKM 2019 (pages 2249–2252)

2. CLRL: Feature Engineering for Cross-Language Record Linkage [16]
Öykü Özlem Çakal, Mohammad Mahdavi, and Ziawasch Abedjan
EDBT 2019 (pages 678–681)

3. Towards Automated Data Cleaning Workflows [58]
Mohammad Mahdavi, Felix Neutatz, Larysa Visengeriyeva, and Ziawasch Abedjan
LWDA 2019 (pages 10–19)

4. Data Science für alle: Grundlagen der Datenprogrammierung [1]
Ziawasch Abedjan, Hagen Anuth, Mahdi Esmailoghli, Mohammad Mahdavi, Felix
Neutatz, and Binger Chen
Informatik Spektrum 2020 (pages 1–8)

1.7.2 Open Source Projects

We have released all the projects implemented based on this thesis under the Apache License 2.0
in the following repositories:

1. https://github.com/bigdama/raha
This repository contains the implementation and documentation of our error detection
and error correction systems, Raha and Baran, including their transfer learning methods.
The repository also contains our non-proprietary datasets and benchmark scripts to
reproduce the experimental results provided in the original research papers. Furthermore,
the repository contains interactive Jupyter Notebooks to build end-to-end data cleaning
pipelines with Raha and Baran.

2. https://github.com/bigdama/reds
This repository contains the implementation and documentation of our error detection
performance estimator system, REDS, including our non-proprietary datasets. In fact,
REDS is the first prototype of our transfer learning engine. We created a separate
repository for REDS as, in contrast to Raha and Baran, REDS focuses on the narrow
task of estimating the performance of error detection strategies.

1.8 Outline

The rest of this thesis is structured as follows. We first review foundations in Chapter 2. We
then review related work in Chapter 3. Next, we detail our error detection system in Chapter 4.
We then elaborate our error correction system in Chapter 5. Next, we detail our transfer
learning methods in Chapter 6. We then experimentally evaluate our proposed approach in
Chapter 7. Next, we demonstrate our data cleaning systems in Chapter 8. Finally, we conclude
the discussions and provide future directions in Chapter 9.
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2
Foundations

We review the foundational concepts of our work in this chapter. We first introduce the input
dataset to our approach and our assumptions on it. We then formally define data errors that
our approach aims at detecting/correcting. Next, we review the core machine learning and
data profiling techniques that our approach is built on. Finally, we summarize the chapter.

2.1 Dataset

The input data to our data cleaning approach could be any relational dataset. More formally,
let d = {t1, t2, ..., t|d|} be a relational dataset of size |d|, where each ti denotes a tuple. Let
A = {a1, a2, ..., a|A|} be the schema of the dataset d, with |A| attributes. Let d[i, j] be the
data cell in the tuple ti of the dataset d and the attribute aj of the schema A.

We denote the ground truth (i.e., the cleaned version) of the same dataset as d∗. We
assume that the dataset d and its ground truth d∗ have the same size, i.e., they both have |d|
data rows and |A| data columns. In fact, we do not allow to add or remove tuples during the
data cleaning process and focus on marking and fixing the existing data values, in accordance
with literature [2, 74].

Example 1 (Dataset). Table 2.1 shows a small dirty dataset d and its ground truth d∗. □

2.2 Data Error

Data errors are those data values inside a dataset that deviate from the actual ground
truth [2]. Every data cell d[i, j] that is different from the corresponding data cell in the ground
truth d∗[i, j] is considered to be a data error. We denote the set of data errors of the dataset d
as E = {d[i, j] | d[i, j] ̸= d∗[i, j]}.

Example 2 (Data error). Considering the dirty dataset d in Table 2.1, the data cells d[3, 2] =
“”, d[4, 2] = “”, d[5, 2] = “123”, and d[6, 2] = “Shire” are erroneous according to the ground
truth d∗, i.e., E = {d[3, 2], d[4, 2], d[5, 2], d[6, 2]}. □
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Table 2.1: A dirty dataset d with marked data errors (left) and its ground truth d∗ (right).

ID Lord Kingdom
1 Aragorn Gondor
2 Sauron Mordor
3 Gandalf
4 Saruman
5 Elrond 123
6 Théoden Shire

ID Lord Kingdom
1 Aragorn Gondor
2 Sauron Mordor
3 Gandalf N/A
4 Saruman Isengard
5 Elrond Rivendell
6 Théoden Rohan

2.2.1 Data Error Categories

Data errors have been traditionally categorized in different ways. A previous work categorized
data errors based on the way they were introduced into the data, such as missing values, typos,
formatting issues, and violated attribute dependencies [72]. Another work categorized data
errors based on the error detection strategies that identify them, such as outliers, pattern
violations, and rule violations [2].

We unify these taxonomies by distinguishing between data error categories and data error
types. We categorize data errors into syntactic and semantic errors. Syntactic errors are those
data values that do not conform to the syntax of the correct values. Semantic errors are those
values that, although are syntactically correct, appear in the wrong context. Furthermore, we
consider prevalent data error types in literature, such as missing values, typos, formatting
issues, and violated attribute dependencies [72]. We aim at detecting/correcting both major
syntactic and semantic error categories and the prevalent data error types.

Example 3 (Data error categories). Considering the dirty dataset d in Table 2.1, the
numerical data value d[5, 2] = “123” is a syntactic error because it does not fit the syntax of
any kingdom name. The data value d[6, 2] = “Shire” is a semantic error because, although it
is a syntactically correct kingdom in “The Lord of the Rings”, the correct value for this data
cell is a different kingdom, namely “Rohan”. □

2.2.2 Data Error Contexts

Every data error has three contexts that can be leveraged to detect and correct the data error:
its value, its vicinity, and its domain.

2.2.2.1 Value Context

Some data errors can be detected and corrected by only taking the data value itself into
consideration. In this case, we can identify wrongly formatted values and transform them into
the correct value. The first data error context is the value of the data error, i.e., eval = d[i, j].

Example 4 (Value context). Suppose an erroneous data cell has the value “16/11/1990”.
We can identify this data error as it does not comply the desired predefined date format
“dd.mm.yyyy”. We can also fix this data error by transforming it into the correct format, i.e.,
“16.11.1990”. □

2.2.2.2 Vicinity Context

The detection and correction of some data errors requires information on their vicinity, i.e.,
information about other clean data values in the same data row. The second data error context
contains all the other clean values inside the same tuple, i.e., the vicinity of the data error
evic = d[i, :].
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Example 5 (Vicinity context). Suppose an erroneous data cell in the data column Capital
has the value “Paris”. We cannot identify/fix this data error because “Paris” is not an erroneous
capital name on its own. But, if we check its clean neighboring data values in the same tuple
and observe “Germany” in the data column Country, then we can change “Paris” to “Berlin”
to make it consistent with its vicinity. □

2.2.2.3 Domain Context

Identifying and fixing some data errors needs domain information, i.e., information about other
clean data values inside the same data column. The third data error context contains all the
other clean values of the same data column, i.e., the domain of the data error edom = d[:, j].

Example 6 (Domain context). Suppose we have an outlying temperature value in the data
column Temperature. We can use the distribution of other clean values inside this data column
to identify this erroneous value and impute the correct value. □

As the above examples show, each data error context can be leveraged in an entirely
different way to detect/correct a data error. These detection/correction procedures are not
easy to integrate although they can independently lead to the same results.

2.3 Machine Learning

Our data cleaning approach leverages machine learning techniques to optimize the data
cleaning process. In particular, Raha and Baran are semi-supervised systems that possess
active learning-based sampling methods and can optionally benefit from transfer learning
methods.

2.3.1 Semi-Supervised Learning

Machine learning tasks can be categorized into three branches: unsupervised, supervised, and
semi-supervised learning [17, 84]. Unsupervised learning is the task of finding structure in
unlabeled data points. Supervised learning is the task of learning a function given a set of
labeled data points. Semi-supervised learning, which lies between unsupervised and supervised
learning, is the task of learning a function given a large number of unlabeled and a small set
of labeled data points. Semi-supervised classification approaches are particularly relevant to
scenarios where labeled data is scarce [84]. Other data cleaning approaches have been also
designed in a semi-supervised manner [51, 60].

We design our data cleaning approach in a semi-supervised manner because obtaining
user annotations for the data cleaning tasks is time consuming and expensive. In fact, we
usually do not have a given set of annotated data values upfront for a new dirty dataset to
train supervised models. On the other hand, we cannot clean data effectively without any
human supervision as the unsupervised models can only detect/correct objective data error
types, such as typos. That is why Raha and Baran start the data cleaning process with no
user labels and ask the user to label a few data points on the fly in a semi-supervised manner.

2.3.2 Active Learning

Active learning is a technique to improve the performance of a machine learning model by
allowing it to ask the label of those particular new data points that the model needs to
know [78]. Hence, active learning is a natural fit for semi-supervised approaches, which have to
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learn a function with a limited number of labeled training data points. Using active learning,
the semi-supervised approaches can converge faster by asking the label of a selective sample of
data points from the user. Other data cleaning approaches have leveraged active learning as
well [94, 51, 60].

We design the tuple sampling methods of our data cleaning approach according to active
learning to sample the most informative tuples for user annotation. As a result, the performance
of Raha and Baran quickly converges with only a few user-annotated tuples.

2.3.3 Transfer Learning

Transfer learning is the act of gaining knowledge from one task and then applying this
knowledge to a different but related task [62]. A natural fit for transfer learning is when
training data is scarce and expensive in one domain while it is widely available in a similar
domain. In this case, the learning model can be pretrained on the related domain and then
be fine-tuned on the current dataset [28]. Other data integration approaches have leveraged
transfer learning for entity matching [96, 15] and missing value imputation [88] tasks.

We design our data cleaning approach in a way that enables us to optionally leverage
transfer learning. In particular, we estimate the effectiveness of the base error detectors and
pretrain the base error correctors via historical data, if available. To the best of our knowledge,
Raha and Baran are the first data cleaning systems that can benefit from transfer learning in
the error detection and correction tasks.

2.4 Data Profiling

Data profiling is the task of generating metadata for a given dataset [3]. Many data
profiling algorithms have been designed to generate various metadata, such as functional
dependencies [10], conditional functional dependencies [30], and denial constraints [19]. Other
data cleaning approaches leverage these metadata as integrity rules for rule-based data
cleaning [22, 20].

Since we design our data cleaning approach configuration free, we do not need the user to
discover and input genuine integrity rules to our approach. In fact, Raha and Baran do not
require the internal base error detectors/correctors to be configured. We instead leverage data
profiling for featurizing and representing the data.

We particularly leverage functional dependencies [3] as base error detectors/correctors
in Raha and Baran. Let X and Y be two subsets of the attributes A of the dataset d, i.e.,
X, Y ⊂ A. A functional dependency X → Y states that any two tuples that agree on the
left-hand-side attributes X must also agree on the right-hand-side attributes Y . In fact, for
each pair of tuples i1 ̸= i2 ∈ d, if d[i1, X] = d[i2, X], then d[i1, Y ] = d[i2, Y ]. Therefore, a base
error detector can mark as data errors all the left-hand-side and right-hand-side values d[i1, X],
d[i2, X], d[i1, Y ], and d[i2, Y ] that violate a functional dependency X → Y . Furthermore, a
base error corrector can also propose to replace these marked values with other clean values in
the dataset that satisfy the functional dependency X → Y .

2.5 Summary

We reviewed the preliminary concepts. In particular, we elaborated our definitions and
assumptions on datasets and data errors. We also explained the necessary machine learning
and data profiling techniques.
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3
Related Work

Our research in this thesis is related to three major research areas. We first review related
research in data cleaning as addressing the data cleaning problem is the main focus of our
work. We then discuss data transformation approaches to clarify their connections to our
approach. Next, we differentiate our research problems from their similar counterparts in
natural language processing. Finally, we summarize the chapter.

3.1 Data Cleaning

Recent data cleaning approaches can be categorized based on different criteria as shown in
Table 3.1. A data cleaning approach might address the error detection task [2, 41, 89], the error
correction task [20, 93, 74], or both [22, 21]. It might work as a single-strategy approach [93,
21] or as an aggregator that internally aggregates multiple base data cleaning approaches [68,
2, 74, 86]. A data cleaning approach might leverage only internal signals from the dataset
itself [93, 67] or additionally incorporate external data sources [21, 39, 74]. A data cleaning
approach might be unsupervised [45, 89], semi supervised [60], or supervised. It might leverage
human supervision in the form of integrity rules [22, 20, 74], statistical parameters [9, 93, 67,
74], or data annotations [86, 41]. A data cleaning approach might leverage human supervision
in only one user interaction [67, 74] or in an interactive manner [94, 87, 40, 51, 60]. Finally, a
data cleaning approach might need data- or approach-dependent configurations [22, 20, 74] or
it might be configuration free.

We can position our data cleaning approach using our data cleaning systems, Raha
and Baran. Raha and Baran address both the error detection and error correction tasks,
respectively. They are both data cleaning aggregators as they internally ensemble multiple
base error detectors/correctors. Raha and Baran leverage both the dataset itself together
with external data sources. They are both semi-supervised data cleaning systems that use
human supervision interactively in the form of only a few annotated data values. Raha and
Baran are configuration free, which means they do not need any data- or system-dependent
configurations from the user.

We next categorize the most prominent recent data cleaning approaches based on the first
criteria, i.e., the data cleaning task, and compare our approach with them.
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Table 3.1: Different categorizations of data cleaning approaches.

Criteria Categories

Data Cleaning Task
Error Detection [2, 41, 89]
Error Correction [20, 93, 74]
End to End [22, 21]

Aggregation Ability Single Strategy [93, 21]
Aggregator [68, 2, 74, 86]

Data Source Usage Bound to Internal Signals [93, 67]
Able to Leverage External Signals [21, 39, 74]

Human Supervision
Unsupervised [45, 89]
Semi Supervised [60]
Supervised

Human Supervision Form
Rule Based [22, 20, 74]
Parameter Based [9, 93, 67, 74]
Annotation Based [86, 41]

Human Supervision Frequency Single Touch [67, 74]
Interactive [94, 87, 40, 51, 60]

Configuration Usage Configuration Based [22, 20, 74]
Configuration Free

3.1.1 Error Detection Approaches

Traditional error detection approaches detect data errors with qualitative or quantitative
heuristics. Qualitative rule-based approaches, such as NADEEF [22], take a set of user-
provided integrity rules in the form of denial constraints and detect data errors accordingly.
Quantitative statistical approaches, such as dBoost [67], take a set of user-provided statistical
parameters (i.e., thresholds) to detect outlying data errors.

The performance of all these approaches heavily depends on the quality of the user-provided
rules and parameters as they directly enforce these rules and parameters on the data. As a
result, without a correct and complete set of integrity rules and statistical parameters, these
approaches cannot achieve high precision and recall. This dependency is a major impediment
for non-expert users as they need to spend a lot of time to discover useful integrity rules
and accurate statistical parameters for each dataset. In fact, they have to run data profiling
systems [63] or consult with metadata taxonomies [85] to collect these configurations for the
dataset at hand.

Our data cleaning approach does not need any user-provided rules or parameters as it is
configuration free. In fact, our two-step formulation of the error detection task allows us to
incorporate many base error detectors that are not necessarily correct or complete. Hence, we
do not need to discover useful integrity rules and accurate statistical parameters to configure
the base error detectors. Raha incorporates each available error detection algorithm with
a large set of possible configurations as base error detectors. This way, Raha learns error
detection rules itself by combining these base error detector signals.

Error detection aggregators, such as min-k and maximum entropy-based order selection [2],
aggregate multiple base error detectors via simple aggregation functions, such as majority
voting or precision-based ordering. The aggregators detect data errors more effectively than
their base error detectors as aggregation of multiple base error detectors naturally improves
the overall precision and recall of the error detection task.

Despite the promise of the aggregation idea, these approaches are limited in terms of their
aggregation functions. Their simple aggregation functions, such as majority voting of the base
error detectors, can work effectively only if the base error detectors are accurate. Therefore,
when the base error detectors generate false positives due to their input configurations,
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aggregating them with a simple function, such as majority voting, will not achieve high
precision either.

Our data cleaning approach aggregates base error detectors with a learning-based
aggregation method. In fact, our two-step formulation of the error detection task allows
us to learn the importance of each particular base error detector using a few user labels. As a
result, Raha achieves high precision by training classifiers that combine the outputs of base
error detectors into one final set of data errors.

Unsupervised error detection approaches, such as Auto-Detect [45] and Uni-Detect [89], aim
at detecting data errors in an unsupervised manner. These approaches automatically detect a
small portion of data errors as achieving “any recall for free is better than no recall” [89].

Most data cleaning tasks need to incorporate human supervision because the desired data
curation might be use-case dependent or subjective. Without any human supervision, these
unsupervised error detection approaches can only detect objective data error types, such
as typos, which are recognized as data errors by any user in any use case. Therefore, the
unsupervised approaches are not expressive enough to detect various real-world data errors
accurately.

Our data cleaning approach uses human supervision in a semi-supervised manner to be
able to identify any data error types according to user’s preferences. In fact, Raha leverages
human supervision in the form of a few user labels to detect data errors.

State-of-the-art error detection approaches, such as metadata driven [86] and HoloDe-
tect [41], learn to detect data errors in a semi-supervised manner. Metadata driven learns to
detect data errors using the output of error detection tools and metadata features. HoloDetect
detects data errors by learning from synthetically generated labeled training data.

Despite the promise, these approaches involve the user a lot due to two main limitations.
First, similar to the traditional approaches, these learning-based approaches need the user to
provide a correct and complete set of integrity rules, statistical parameters, or both. Metadata
Driven needs the user to configure its underlying error detection tools accurately. HoloDetect
leverages user-provided data constraints to construct a data representation model. While it
is a tedious task for non-expert users to provide these input configurations, the performance
of these approaches heavily depends on the quality of these input configurations. Second,
they need a large number of labeled training data points that scales with the size of dataset,
i.e., 1% − 10% of the dataset [86, 41]. The reason is that these approaches randomly sample
tuples for user labeling as they do not have any data cleaning-specific tuple sampling methods.
This user labeling task is particularly tedious in the case of HoloDetect as this approach
requires the user to both mark and fix data errors. In fact, HoloDetect needs the correction of
user-labeled data errors as well to train an error generator model for generating more training
data, according to the data augmentation technique.

Our data cleaning approach minimizes user involvement as it does not suffer from these
limitations. First, as mentioned, our approach is configuration free and does not need any
user-provided rules or parameters. Second, due to our effective feature representation and
tuple sampling methods, the required number of user labels of our approach scales with the
number of data error types of dataset, i.e., 10 − 20 labeled tuples. In fact, this number of
labeled tuples is enough for our approach to learn prevalent data error types introduced in
Section 2.2. Raha detects data errors effectively using only a few labeled tuples as it represents
each data cell with a large and expressive feature vector and samples the most informative
tuples for user labeling.
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3.1.2 Error Correction Approaches

Traditional error correction approaches, such as Holistic [20] and LLUNATIC [34], are rule
based. They take a set of user-provided integrity rules in the form of denial constraints and
correct data errors accordingly.

Similar to the traditional error detection approaches, the performance of these rule-based
error correction approaches heavily depends on the quality of the user-provided rules as they
directly enforce these rules on the data to make the dataset consistent. Therefore, these
approaches suffer from the same limitations as they need the user to provide a correct and
complete set of integrity rules.

Our configuration-free data cleaning approach does not need any user-provided rules or
parameters. As mentioned, our two-step formulation of the error correction task allows us to
incorporate many base error correctors that are not necessarily correct or complete. Our error
correction system, Baran, incorporates various base error correctors based on different data
error contexts. This way, Baran learns error correction rules itself by using these base error
corrector signals and a few user labels.

Interactive error correction approaches, such as GDR [94] and Falcon [40], incorporate
continuous user feedback to conduct the data cleaning process. Therefore, the user does not
have to start the data cleaning process with a complete set of configurations and the user can
incrementally update them during the process.

Although continuous user feedback improves the error correction performance, these
approaches do not make the best use of it. While GDR uses user feedback to choose the actual
correction from a set of potential correction updates, it still needs a given set of integrity rules
to generate these correction candidates. Hence, it also suffers from the same downsides of
the rule-based approaches, i.e., it relies on user-provided integrity rules. Falcon is confined to
SQL-like update queries and cannot learn more complicated correction operations from user
feedback.

Our data cleaning approach incorporates interactive user feedback in an example-driven
way, taking examples of data errors and their correction from the user. Furthermore, it learns
various error correction operations using the value, the vicinity, and the domain contexts of
data errors. In particular, Baran learns four types of value-based correction operations in
contrast to the simple SQL-like update queries of Falcon.

State-of-the-art error correction approaches, such as SCARE [93] and HoloClean [74], learn
to correct data errors. SCARE learns to correct data errors in different data partitions based
on statistical likelihoods. HoloClean trains a graphical model to correct data errors with
respect to integrity rules, matching dependencies, and statistical signals.

These approaches suffer from two main limitations. First, similar to the traditional
approaches, these learning-based approaches need the user to provide a correct and complete
set of integrity rules, statistical parameters, or both. While it is a tedious task for non-expert
users to provide these input configurations, the performance of these approaches heavily
depends on the quality of these input configurations. Second, these approaches heavily depend
on data redundancy as they reduce the data cleaning problem to the task of “finding a
consistent permutation of data values”. In fact, their idea is to minimally swap data values
in the dataset with respect to a cost function, such as the number of value changes, until
the dataset becomes consistent with respect to the integrity rules and statistical likelihoods.
Therefore, the performance of these approaches not only depends on the correctness and
completeness of the input rule/parameter set, but also on the amount of redundancy in data.
Without duplicate tuples that provide the actual clean value of a data error in the active
domain, without correlated data columns that connect data values across domains, and without
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a correct and complete set of predefined user-given rules and parameters to define consistency
on top of redundant data, these approaches fail to achieve both high precision and recall.

Our data cleaning approach addresses these limitations. First, our configuration-free
approach does not need any user-provided rules or parameters. Second, besides leveraging
data redundancy to correct data errors, our approach further learns to generate correction
candidates using user-provided annotations and historical data. In particular, Baran leverages
user-provided corrections and value updates in historical datasets to generate additional
correction candidates besides clean values of the dataset.

3.1.3 End-to-End Approaches

Traditional end-to-end data cleaning approaches both detect and correct data errors with
qualitative heuristics, such as NADEEF [22], or quantitative heuristics, such as DEC [9]. They
check the conformity of data to user-provided rules and parameters, detect inconsistencies,
and correct them with minimal changes. Hence, they also depend on the quality of the
user-provided rules and parameters and cannot be effective without a correct and complete set
of configurations.

A group of data cleaning approaches, such as KATARA [21] and Detective Rules [39], can
use out-of-dataset signals from a master dataset, such as the DBpedia knowledge base [8], to
detect and correct data errors of the dataset at hand. In fact, they match the dataset at hand
to an external data source and detect/correct conflicting data errors in the dataset at hand.
This way, they can reduce the required user feedback on the dataset at hand as the external
master data might automatically provide some relevant data errors/corrections for the dataset.

Despite the promising idea, these approaches are limited due to their matching methods.
The simple matching operation is too naive as a master dataset might not match to all parts
of the dataset at hand or it might match wrongly to some data parts due to the ambiguity
in concepts. As a result, these approaches cannot achieve high error detection/correction
precision and recall.

Our data cleaning approach uses external data sources through learning-based models
to avoid wrong mismatches. Using historical datasets as training data, our approach learns
to predict the effectiveness of base error detectors on the dataset at hand. This way, it can
identify the most effective base error detectors for the dataset at hand without matching
datasets. Furthermore, our approach learns the value-based corrections observed in historical
data upfront to generate more correction candidates on the dataset at hand. Therefore, both
Raha and Baran can leverage transfer learning to transfer error detection/correction knowledge
from historical data to the dataset at hand.

There are also other data integration/cleaning approaches that can be considered relevant
to our research. Hands-off entity matching approaches, such as Corleone [35], Falcon [24], and
CloudMatcher [37], are also configuration free. However, we propose the first configuration-free
approach to address the data cleaning problem, which is a more challenging task than entity
matching in the absence of user-provided configurations. Machine learning-tailored data
cleaning approaches, such as ActiveClean [51], BoostClean [50], and AlphaClean [52], also
clean datasets. However, these approaches are not general-purpose data cleaning systems as
they rely on a downstream machine learning task to evaluate and guide the data cleaning
process. In contrast, our general-purpose data cleaning approach can clean datasets regardless
of the downstream applications.
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3.2 Data Transformation

Data transformation is the task of transforming data values from one format into another [6].
A data transformation could be syntactic, such as transforming the value “1 m” to “100 cm”,
or semantic, such as transforming the value “Holland” to “Netherlands” [4]. Programming
by example is an approach to address the data transformation problem. Programming by
example is the task of synthesizing a program that satisfies a set of input-output examples [38].
Other data integration approaches have leveraged the programming by example paradigm for
string transformation [80] and data wrangling [47, 81] tasks.

Our data cleaning approach leverages data transformation and programming by example
as one type of error correction, i.e., the value-based correction. In particular, Baran
possesses various value-based error corrector models to learn both syntactic and semantic
value transformations from user-provided examples.

3.3 Natural Language Processing

Our research problems might seem similar to well-known problems in natural language
processing. In particular, data preprocessing seems similar to text preprocessing and error
detection/correction seems similar to spell checking/fixing. We clarify the differences and
explain why similar natural language processing approaches are not necessarily applicable to
the data cleaning tasks.

3.3.1 Text Preprocessing

Text preprocessing is the task of representing unstructured texts in a unified way by multiple
techniques, such as Unicode normalization, tokenization, stemming, lemmatization, and stop
word removal [77]. Text preprocessing is an essential step in unstructured text processing
pipelines as it reduces the vocabulary size by text unification. As a result, machine learning
models will avoid out-of-vocabulary words in new text corpora.

Data preprocessing for structured data is the counterpart task of text preprocessing
that similarly aims to represent the data more effectively. However, the mentioned text
preprocessing techniques do not address the structured data preprocessing needs due to the
nature of structured datasets. Structured datasets are intended to store a limited number
of unique values in a well-structured format. Thus, having the right value in the right spot
of the dataset is more important than vocabulary size reduction. Therefore, the standard
text preprocessing approaches are not applicable and we need dedicated data preprocessing
approaches for structured data.

3.3.2 Spell Checking and Fixing

Spell checking/fixing is the task of detecting/correcting objective data error types, such as typos
and grammar mistakes, in texts [66]. Data quality issues in natural language processing are
confined to these objective data error types as defining more specific data quality requirements
for unstructured text corpora is not applicable. Spell checking/fixing approaches leverage
contextual words in the same sentence to detect/correct a typo or grammar issue.

Data cleaning aims at detecting/correcting various data error types in structured datasets
based on user’s preferences. Applying typical spell checking/fixing tools from natural language
processing is not enough to detect/correct all data error types in structured datasets for two
reasons. First, they cannot detect/correct subjective data error types, such as violated attribute
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dependencies and formatting issues [72], which do not fit user’s specific preferences. Second,
they cannot effectively detect/correct objective data errors because contextual information
in structured data is not necessarily as rich as unstructured text corpora. In fact, while in
unstructured text a typo can be identified and fixed using its surrounding contextual words in
the same sentence, the neighboring data values in a structured dataset could be irrelevant to
each other. Therefore, identifying/fixing even objective data error types is harder in structured
datasets and requires us to redefine the context of a data value for structured data.

3.4 Summary

We reviewed the related research to our work. We first categorized and reviewed the
most prominent recent data cleaning approaches. We then clarified the connection of data
transformation to our work. Finally, we distinguished our research problems from their similar
counterparts in natural language processing.
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4
Raha: The Error Detection System

Error detection is the task of identifying data values that are wrong. Although there are many
error detection algorithms in literature [2], detecting all data errors accurately with minimum
user involvement is not trivial as these error detection algorithms need the user to provide a
correct and complete set of data- or algorithm-specific configurations.

Problem 1 (Error detection). Given as input a dirty dataset d, a set of available error
detection algorithms B = {b1, b2, ..., b|B|} that require configurations, and a user with a
labeling budget θLabels to annotate tuples, the goal is to identify all data errors within d, i.e.,
E = {d[i, j] | d[i, j] ̸= d∗[i, j]}. □

Raha leverages a novel two-step task formulation to achieve both high error detection
precision and recall using a few user labels. The intuition is that, by collecting a set of base
error detectors that can independently mark data errors, we can learn to combine them into a
final set of data errors using a few informative user labels. First, Raha automatically configures
these error detection algorithms and leverages their output to represent data quality issues of
data cells. Then, Raha learns to detect data errors using this data representation and a few
user labels.

Figure 4.1 illustrates the workflow of Raha. Given as input the dirty dataset, the data
cleaning toolbox, and the user feedback, Raha outputs the set of data errors through the
following steps.

Step 1: Configuring error detection algorithms. Raha systematically configures each
existing algorithm to generate a set of error detection strategies. The set of error detection
strategies should be automatically generatable and comprehensive enough to detect various
data error types. We detail this step in Section 4.1.

Step 2: Running error detection strategies. Raha runs the error detection strategies on
the dataset. Each strategy marks a set of data cells as data errors. We detail this step in
Section 4.2.

Step 3: Generating feature vectors. Raha generates a feature vector for each data cell by
collecting the output of all the error detection strategies. Each element in the feature vector
of a data cell is a binary flag that shows whether a particular strategy marks this data cell as
a data error or not. We detail this step in Section 4.2.
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Raha: Error Detection System
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Figure 4.1: The workflow of Raha.

Step 4: Clustering data cells. Raha clusters the data cells of each data column in each
iteration, based on the similarity of their feature vectors. The number of clusters per data
column needs to be set automatically according to the number of existing data error types.
We detail this step in Section 4.3.

Step 5: Sampling a tuple. Raha samples a tuple in each iteration to be labeled by the user.
Thus, the total number of iterations is bound by the user labeling budget θLabels. Since each
data column has a separate set of clusters, the sampled tuple should ideally cover as many
unlabeled clusters as possible over all the data columns. We detail this step in Section 4.3.

Step 6: Labeling data cells. Raha asks the user to label data cells of the sampled tuple as
dirty or clean. Raha iteratively repeats the steps 4, 5, and 6 until the user labeling budget
θLabels is depleted.

Step 7: Propagating user labels through clusters. Raha propagates the user labels
through the clusters. These propagated labels are noisy as they have not been verified by the
user. We detail this step in Section 4.4.

Step 8: Training classifiers. Raha trains a classifier per data column based on the feature
vectors of data cells and the propagated labels, i.e., user labels and noisy labels. We detail
this step in Section 4.4.

Step 9: Predicting labels of remaining data cells. The trained classifiers are applied to
predict the labels of the remaining unlabeled data cells.

Algorithm 1 also shows the main steps of Raha in pseudocode. Raha first configures error
detection algorithms (line 1). Raha then generates the feature vectors (line 2). Next, Raha
iteratively clusters data cells and samples tuples for user labeling (lines 3–11). Finally, it
propagates the user labels through the clusters, trains a set of classifiers, and applies them to
predict the label of unlabeled data cells (lines 12–16).
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Algorithm 1: Raha(d, B, θLabels).
Input: dataset d, set of error detection algorithms B, user labeling budget θLabels.
Output: set of data errors E.

1 S ← generate error detection strategies by automatically configuring all the algorithms b ∈ B;
2 V ← generate feature vectors by running all the strategies s ∈ S on the dataset d;
3 k ← 2; // number of clusters per data column
4 L← {}; // set of user labeled tuples
5 while |L| < θLabels do
6 for each data column j ∈ [1, |A|] do
7 ψj ← cluster data cells of the data column j into k clusters;
8 t∗ ← draw a tuple with the probability proportional to P (t);
9 ask the user to label the tuple t∗;

10 L← L ∪ {t∗};
11 k ← k + 1;
12 E ← {}; // set of data errors
13 for each data column j ∈ [1, |A|] do
14 L′

j ← propagate the user labels through the clusters ψj ;
15 ϕj ← train a classifier with the feature vectors Vj and the propagated labels L′

j ;
16 E ← E ∪ apply the classifier ϕj to the feature vectors Vj ;

We first elaborate the error detection strategies. We next explain the feature generation
process. Then, we detail the tuple sampling and labeling method. Next, we elaborate the label
propagation and classification step. Finally, we summarize the chapter.

4.1 Error Detection Strategies

Previous research proposed many error detection algorithms [67, 47, 22, 21] that can be
categorized into four families: outlier detection, pattern violation detection, rule violation
detection, and knowledge base violation detection algorithms [2].

Each error detection algorithm needs to be configured based on the characteristics of the
given dataset. Depending on the error detection algorithm, the configuration might include
statistical parameters, such as expected mean and standard deviation; patterns, such as the
desired date format “dd.mm.yyyy”; specification of rules, such as the functional dependency
ZIP → City; or providing links to reference datasets, such as DBpedia [8].

We consider each combination of an algorithm and a configuration as one distinct error
detection strategy. In fact, an error detection strategy is any configured algorithm that can
mark data cells of a dataset as data errors based on a logic. More formally, the set of error
detection strategies is S = {s = (b, g) | b ∈ B, g ∈ Gb}, where B is the set of error detection
algorithms and Gb is the set of finite/infinite space of different configurations of an error
detection algorithm b ∈ B.

Our set of base error detectors incorporates all the four families of error detection strategies.
This way, we leverage all data error contexts to detect all data error categories. Outlier and
pattern violation detection strategies leverage the value and domain contexts of data errors to
detect mainly syntactic errors. Rule and knowledge base violation detection strategies leverage
the vicinity context of data errors to detect mainly semantic errors. The user can optionally
enrich the default set of base error detectors by adding new error detection strategies.

These error detection algorithms take as input either continuous numerical parameters
or discrete nominal parameters. For algorithms with numerical parameters, such as outlier
detectors, we quantize the continuous range of the parameters. For algorithms with infinite
nominal parameters, such as patterns, rules, and knowledge base violation detectors, we identify
heuristics to effectively limit the space of parameters. Any other error detection algorithm
that does not require any of such parameters, i.e., a black box, can only be used with a single
configuration.
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Of course, only a subset of the generated error detection strategies may effectively mark
data errors on a given dataset and most of them might be imprecise. Nevertheless, as long as
each strategy marks data cells using the same logic, Raha can use the output of the strategy
as a notion of similarity for comparing data cells.

4.1.1 Outlier Detection Strategies

Outlier detection algorithms [67] assess the correctness of data values in terms of compatibility
with the general distribution of values that reside inside the data column. Identification of
outliers depends on the type of data values. To detect string outliers, we need to compare
the frequency of the string data values. To detect numerical outliers, we need to compare the
magnitude of the numerical data values. Thus, we leverage two fundamental Histogram- and
Gaussian-based outlier detection algorithms [67] that leverage the occurrence and magnitude
of data values, respectively.

A histogram-based strategy builds a histogram distribution based on the frequency of data
values in a particular data column. The strategy sθtf marks data cells from the rare bins as data
errors, i.e., data cells with a normalized term frequency smaller than a threshold θtf ∈ (0, 1).
Formally,

sθtf(d[i, j]) =

1, iff TF (d[i,j])∑|d|
i′=1 TF (d[i′,j])

< θtf;

0, otherwise;

where TF (d[i, j]) is the term frequency of the data cell d[i, j] inside the data column j.
Raha generates 9 histogram-based outlier detection strategies by setting the threshold θtf ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In fact, Raha divides the threshold range θtf ∈ (0, 1)
into 0.1 intervals as, in practice, we notice that finer granular thresholds (e.g., θtf = 0.15) do
not create more distinctive outlier detection strategies in comparison to the coarser granular
selection of thresholds.

A Gaussian-based strategy builds a Gaussian distribution based on the magnitude of the
numerical values in a particular data column. The strategy sθdist marks as data errors those
numerical data cells whose normalized distance to the mean is larger than a threshold θdist ∈
(0, ∞). Formally,

sθdist(d[i, j]) =

1, iff |d[i,j]−µj |
σj

> θdist;
0, otherwise;

where µj is the mean and σj is the standard deviation of the numerical data column j.
Raha generates 9 Gaussian-based outlier detection strategies by setting the threshold θdist ∈

{1, 1.3, 1.5, 1.7, 2, 2.3, 2.5, 2.7, 3}, according to the 68-95-99.7 rule [83].

Example 7 (Outlier detection strategies). On the dataset d in Table 4.1, the
output of two histogram-based outlier detection strategies over the attribute King-
dom would be so1 = {d[1, 2], d[2, 2], d[5, 2], d[6, 2]} by setting θtf = 2

6 and so2 =
{d[1, 2], d[2, 2], d[3, 2], d[4, 2], d[5, 2], d[6, 2]} by setting θtf = 3

6 . □

4.1.2 Pattern Violation Detection Strategies

Pattern violation detection algorithms [47] assess the correctness of data values in terms of
compatibility with predefined data patterns. In fact, they mark data values that do not match
a certain data pattern.

Ideally, we could have domain-specific data patterns for each given dirty dataset. For
example, to detect data errors in an IT-related dataset, the user provides a set of regular
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4.1 Error Detection Strategies

Table 4.1: A dirty dataset d with marked data errors (left) and its ground truth d∗ (right).

ID Lord Kingdom
1 Aragorn Gondor
2 Sauron Mordor
3 Gandalf
4 Saruman
5 Elrond 123
6 Théoden Shire

ID Lord Kingdom
1 Aragorn Gondor
2 Sauron Mordor
3 Gandalf N/A
4 Saruman Isengard
5 Elrond Rivendell
6 Théoden Rohan

expressions to identify valid and invalid URLs and email addresses. This way, we can accurately
detect data errors as these domain-specific data patterns are designed for the dirty dataset
at hand. However, we do not want to involve the user to provide these configurations for
each dataset. Therefore, we need a general data pattern representation that can theoretically
capture any domain-specific data pattern to not hold any assumption on the data domain.

We leverage the bag-of-characters representation [77], which is a general representation
for encoding all possible data patterns, i.e., character combinations. This representation can
also encode the length and type of data values as it also shows which and how many distinct
characters appear in data values.

We generate a set of character checker strategies sch to check the existence of each
character ch in data cells. For each character ch in the set of all characters in a data column j,
the strategy sch marks a data cell d[i, j] as data error if the data cell contains character ch.
Formally,

sch(d[i, j]) =
{

1, iff d[i, j] contains ch;
0, otherwise.

Overall, we have ⋃|A|
j=1 |Σj | pattern violation detection strategies in our system, where |A|

is the number of data columns and Σj is the set of all distinct characters appearing in the
data column j.

Example 8 (Pattern violation detection strategies). On the dataset d in Table 4.1, the
output of two pattern violation detection strategies over the attribute Kingdom would be
sp1 = {d[1, 2], d[2, 2]} by setting ch = “o” and sp2 = {d[5, 2]} by setting ch = “1”. □

4.1.3 Rule Violation Detection Strategies

Rule violation detection algorithms [22] assess the correctness of data values based on their
conformity to integrity rules, such as not being null or being unique. Since the single-column
rules, such as value range and length, are implicitly covered by the outlier and pattern
violation detection algorithms, we include here only rule violation detection strategies that
check inter-column dependencies. In particular, we focus on rules in the form of functional
dependencies [3].

We limit the scope of functional dependencies to only those with a single attribute on their
left-hand side, in order to reasonably limit the exponential space of all possible functional
dependencies. This way, we also avoid potentially unintended dependencies that arise by
considering large sets of data columns. As discussed in literature [64], most interesting
functional dependencies involve only a few attributes. As we do not know upfront which
functional dependencies are useful, we consider all pairs of data columns as potential functional
dependencies. With this approach, we are also covering partial functional dependency
relationships that were unknown to the user.
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For each pair of data columns ∀j1 ≠ j2 ∈ [1, |A|], the strategy sj1→j2 marks all data
cells d[i, j] that violate the functional dependency j1 → j2. Formally,

sj1→j2(d[i, j]) =
{

1, iff d[i, j] violates j1 → j2;
0, otherwise.

The number of rule violation detection strategies is |A| × (|A| − 1) as we consider the
functional dependencies from and to each attribute.

Example 9 (Rule violation detection strategies). On the dataset d in Table 4.1, the
output of two rule violation detection strategies over the attribute Kingdom would be sr1 = {}
by checking the functional dependency Lord → Kingdom and sr2 = {d[3, 2], d[4, 2]} by checking
the functional dependency Kingdom → Lord. □

4.1.4 Knowledge Base Violation Detection Strategies

Knowledge base violation detection algorithms [21] assess the correctness of data values by
cross-checking them with data within a knowledge base, such as DBpedia [8].

Knowledge bases contain rich information about the world’s entities and their mutual
relationships [79]. These knowledge bases are constructed by extracting high-quality structured
data from unstructured information [26]. The data inside a knowledge base is usually stored
in the form of entity relationships, such as City isCapitalOf Country. Here, City and Country
are entity types and isCapitalOf is a relationship. The algorithm tries to match each side of
a relationship to different data columns in the dataset. If there are two data columns that
are matched to both sides of the relationship (e.g., City and Country), the algorithm marks
data values in the matched data columns that contradict the entity relationship inside the
knowledge base. Therefore, the knowledge base violation detection algorithms can also identify
data errors that violate inter-column dependencies.

For each relationship r inside the knowledge base, the strategy sr marks all data cells d[i, j]
that violate the relationship. Formally,

sr(d[i, j]) =
{

1, iff d[i, j] violates r;
0, otherwise.

Overall, we have as many knowledge base violation detection strategies as there are
relationships inside the DBpedia knowledge base [8], i.e., 2064 strategies.

Example 10 (Knowledge base violation detection strategies). On the dataset d in
Table 4.1, the output of two knowledge base violation detection strategies over the attribute
Kingdom would be sk1 = {d[3, 2], d[4, 2], d[5, 2], d[6, 2]} by setting the entity relationship to
Lord isKingOf Kingdom and sk2 = {} by setting the entity relationship to City isCapitalOf
Country. □

4.2 Feature Vector Generation

The mentioned error detection strategies mark data cells as data errors based on different
intuitions. Therefore, we can describe data quality issues of a data cell by collecting the output
of all the strategies on that particular data cell.

Raha maps each data cell to a feature vector that is composed of the output of error
detection strategies. Having a set of error detection strategies S = {s1, s2, ..., s|S|}, Raha runs
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4.3 Tuple Sampling and Labeling

Table 4.2: Featurizing data cells of the data column Kingdom.

ID Kingdom so1 so2 sp1 sp2 sr1 sr2 sk1 sk2

1 Gondor 1 1 1 0 0 0 0 0
2 Mordor 1 1 1 0 0 0 0 0
3 0 1 0 0 0 1 1 0
4 0 1 0 0 0 1 1 0
5 123 1 1 0 1 0 0 1 0
6 Shire 1 1 0 0 0 0 1 0

each strategy s ∈ S on the dataset d. Each strategy s either marks a data cell d[i, j] as a data
error or not. Formally, Raha stores this information as

s(d[i, j]) =
{

1, iff s marks d[i, j] as a data error;
0, otherwise.

The feature vector of the data cell d[i, j] is the vector of all the outputs of the error
detection strategies s ∈ S on this data cell. Formally,

v(d[i, j]) = [s(d[i, j]) | ∀s ∈ S]. (4.1)

Hence, the set of feature vectors of data cells v(d[i, j]) inside a particular data column j is

Vj = {v(d[i, j]) | i ∈ [1, |d|]}. (4.2)

Raha post-processes the feature vectors of each data column Vj to remove non-informative
features that are constant for all the data cells of the data column.
Example 11 (Feature vector generation). We introduced two configurations for each
family of error detection algorithms in Section 4.1. This would result into |S| = |B × Gb| =
4 × 2 = 8 strategies: S = {so1, so2, sp1, sp2, sr1, sr2, sk1, sk2}. As mentioned, each of these
strategies marks a set of data cells as data errors in our running example.

Table 4.2 shows the feature vectors that Raha generates for each data cell in the data
column Kingdom. For example, the feature vector of the data cell d[1, 2] = “Gondor” is
[1, 1, 1, 0, 0, 0, 0, 0], as only the strategies so1, so2, and sp1 mark this data cell as a data error.
Raha removes the features so2, sr1, and sk2 in the post-processing phase as these features are
constant for all data cells of the data column Kingdom.

We can identify similar clean/dirty data cells as the feature vectors represent data quality
issues of data cells. For example, the clean data cells d[1, 2] = “Gondor” and d[2, 2] = “Mordor”
have the same feature representation. □

4.3 Tuple Sampling and Labeling

After designing a feature representation, we need to incorporate human supervision to learn
various data error types. In particular, we need to ask the user to label a sampled subset of
data cells as clean or dirty.

A straightforward sampling method is to uniformly pick n random tuples from the
dataset [86, 41]. Therefore, we will have n × |A| labeled data cells for training classifiers.
However, this method is not effective on datasets with low data error rates due to the class
imbalance ratio of clean and dirty data cells. In fact, since the number of dirty data cells is
much smaller than the number of clean data cells, a small set of uniformly sampled data cells
cannot cover various data error types.
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4. Raha: The Error Detection System

Raha follows a clustering-based sampling method to sample a small set of tuples that cover
various data error types across all data columns. Raha first clusters data cells of each data
column and then samples tuples that cover mostly the unlabeled clusters.

4.3.1 Clustering Data Cells

Using our expressive feature vector, we can boost the number of labeled data cells per data
column using the cluster assumption, which states that two data points are likely to have the
same class label if they belong to one cluster [18]. Therefore, we can cluster data cells and
assign the same dirty/clean label to all data cells in each cluster.

Raha builds a separate clustering model for each data column as data values are better
comparable within their own domain. Setting the number of clusters k per data column is
particularly challenging. Smaller k’s yield bigger clusters that are more likely to contain a mix
of dirty and clean data cells. Inversely, bigger k’s will lead to more clusters, requiring more
and potentially unnecessary labels from the user. Although there are clustering algorithms
that can automatically choose the number of clusters, such as DBSCAN [29], they need other
more non-intuitive input parameters, such as minimum/maximum distances between data
points of different clusters.

Raha builds a hierarchical agglomerative clustering model [5] per data column, which
allows a flexible specification of the number of clusters. Raha starts with only two clusters per
data column and then increases the number of clusters in each iteration. Its iterative process
lets the user terminate the clustering-based sampling process at will and in accordance with
the labeling budget. As the choice of the similarity metric and the linkage method does not
affect Raha’s performance, we use the default cosine similarity metric and the average linkage
method.

4.3.2 Tuple Selection

So far, Raha clusters data cells of each data column independent of clustered data cells of the
other data columns. We can ask the user to label a data cell per cluster. However, the user
typically needs to check the whole tuple to label one data cell. Thus, it is more intuitive to
sample entire tuples for user labeling than individual data cells per data column.

Finding a minimum set of tuples that covers all the unlabeled clusters is the classical set
cover problem [48], which is NP-complete. In every clustering iteration, each data column is
divided into k clusters of data cells. Some of these clusters are unlabeled, i.e., none of their
data cells has been labeled. Ideally, the sampled tuples should cover all unlabeled clusters from
each data column. This way, labeling the sampled tuples leads to labeling all the unlabeled
data cells.

To address this NP-complete problem, we design an approximate method with two
properties. First, we relax the challenge of finding a minimum set of tuples by selecting
only one tuple in each iteration. This way, we avoid the challenge of finding tuples that do not
cover the same set of clusters. Second, instead of deterministically selecting the tuple that
covers the most number of unlabeled clusters, we probabilistically select this tuple. This way,
we avoid getting stuck in local optima as probabilistic solutions of this problem have been
shown to be more resilient than deterministic greedy heuristics against local optima [31].

Therefore, Raha draws a tuple t∗ in each iteration based on the softmax probability function

P (t) = exp(∑
c∈t exp(−Nc))∑

t′∈d exp(∑
c∈t′ exp(−Nc))

, (4.3)
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Table 4.3: Clustering data cells of the data column Kingdom.

ID Kingdom so1 so2 sp1 sp2 sr1 sr2 sk1 sk2

1 Gondor 1 1 1 0 0 0 0 0
2 Mordor 1 1 1 0 0 0 0 0

3 0 1 0 0 0 1 1 0
4 0 1 0 0 0 1 1 0

5 123 1 1 0 1 0 0 1 0
6 Shire 1 1 0 0 0 0 1 0

where Nc is the number of user-labeled data cells in the current cluster of data cell c. This
scoring formula benefits tuples whose data cells mostly belong to the clusters that have received
fewer user labels.

The user takes one sampled tuple t∗ in each iteration and labels its data cells as clean or
dirty. At the end of each iteration, we have the set of user labeled tuples L ⊂ d. This iterative
procedure is repeated in the next iterations with a larger number of clusters k ∈ {2, 3, ...} as
long as the labeling budget of the user is not depleted, i.e., |L| < θLabels. At the end of the
tuple sampling and labeling process, we have k = θLabels + 1 clusters per data column and
|L| = θLabels labeled tuples.

The proposed clustering-based sampling scheme has two characteristics. First, since the
sampling method iteratively clusters and labels underlabeled clusters, the expectation is that,
at some point, we will cluster each data column into homogeneously clean or dirty clusters,
respectively. In other words, if there is a certain type of data errors inside one data column,
the hierarchical clustering method eventually identifies its corresponding cluster. Furthermore,
the sampling method addresses the natural class imbalance issue as well, because the rare
dirty labels will be propagated through the corresponding clusters.

Example 12 (Tuple sampling and labeling). Table 4.3 shows the second iteration of the
clustering-based sampling on our running example, when Raha clusters the data cells inside
the data column Kingdom into 3 groups: a green, a blue, and a purple cluster.

Suppose Raha already sampled the tuple t1 in the first and the tuple t3 in this iteration.
These two tuples cover the green and the blue clusters over the data column Kingdom. Ideally,
these two tuples should cover two different clusters in the other data column of the dataset,
i.e., the data column Lord.

The user labels data cells of these two tuples. In particular, the user labels the data cells
d[1, 1], d[1, 2], and d[3, 1] as clean and the data cell d[3, 2] as dirty. □

4.4 Label Propagation and Classification

In semi-supervised settings like ours, having more user labels leads to faster convergence of
the models [82]. We thus leverage the clusters to boost the number of labels, according to the
cluster assumption [18]. Since we cluster data cells based on the expressive feature vectors, the
data cells inside one particular cluster are likely to have the same dirty/clean label. Therefore,
we can propagate user labels through the clusters.

Raha propagates the user label of each data cell to all data cells in its cluster. Let
L′ = {d[i, j] | i ∈ L, j ∈ [1, |A|]} be the set of labeled data cells, i.e., all data cells of the labeled
tuples L. All the unlabeled data cells d[i′, j′] /∈ L′ that are inside the same cluster of a labeled
data cell d[i, j] ∈ L′ get the same dirty/clean label of data cell d[i, j]. This way, the number of
training labels L′ increases significantly.
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4. Raha: The Error Detection System

Since a cluster might have multiple user-labeled data cells with contradicting dirty/clean
labels, we need a way to resolve such contradictions. We investigate two conflict resolution
functions to propagate user labels in clusters.

1. Homogeneity-based conflict resolution function. The homogeneity-based function
propagates user labels only in clusters that do not contain two data cells with contradicting
labels. This method works under the assumption of perfect user labels, in which case, the
contradicting user labels inside one cluster indicate that the cluster is not homogeneous
enough for label propagation.

2. Majority-based conflict resolution function. The majority-based function propa-
gates the user labels in clusters with mixed labels as well if a label class has the majority.
The intuition is that a homogeneous cluster could also have contradicting user labels
due to a user labeling error.

Raha then trains a classifier ϕj per data column j to predict the labels for the unlabeled
data cells in the same data column. In the training phase, each classifier ϕj takes the feature
vectors of data cells inside the data column Vj along with the labeled data cells L′. In the
prediction phase, each classifier ϕj predicts the label of all data cells in the data column j
that are not labeled by the user.

We train one classifier for each data column because, similar to the clustering per data
column, data cells are better comparable inside their own domain. Although we train a
classifier per data column, the classifier can still consider inter-column dependency violations
due to the rule and knowledge base violation detection features.

Example 13 (Label propagation and classification). Considering the clusters and the
labeled data cells of the data column Kingdom in Table 4.3, Raha propagates the user labels:
The data cell d[2, 2] gets a noisy clean label and the data cell d[4, 2] gets a noisy dirty label
due to the user-labeled data cells d[1, 2] and d[3, 2], respectively.

Therefore, the corresponding classifier of the data column Kingdom is trained on the first
four labeled data points and predicts the label of the last two unlabeled data points. □

4.5 Summary

Raha is a a novel error detection system that relieves the user from the tedious task of selecting
and configuring error detection algorithms. Raha systematically generates a wide range of
error detection strategies and encodes their output into a feature vector for each data cell.
Raha then clusters data cells of each data column and samples those tuples that cover mostly
unlabeled clusters. Asking the user to label a few sampled tuples, Raha propagates the user
labels through the clusters to boost the number of labeled data points. Finally, Raha trains
and applies a classifier per data column to label the rest of unlabeled data cells.

Our novel two-step formulation of the error detection task allows Raha to achieve both
high precision and recall using only a few user labels. First, the error detection strategies
generate many data error candidates that increase the achievable recall bound of Raha. Then,
Raha incorporates human supervision using a few labeled tuples to accurately identify the
actual data errors among the set of all data error candidates.
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5
Baran: The Error Correction System

Error correction is the task of fixing the detected data errors. Correcting all data errors
accurately with a minimum user involvement is not trivial due to the trade-off among correctness,
completeness, and automation.

Problem 2 (Error correction). Given as input a dirty dataset d, the set of detected data
errors E, the set of error corrector models M , and a user labeling budget θLabels to annotate
tuples, the goal is to correct all the detected data errors. □

Baran leverages a novel two-step task formulation to achieve both high error correction
precision and recall using a few user labels. The intuition is that, by collecting a set of
base error correctors that can independently fix data errors, we can learn to combine them
into a final set of corrections using a few informative user labels. First, Baran collects all
correction candidates proposed by a set of base error correctors and represents the fitness of
each correction candidate for each data error. Then, Baran learns to find the actual correction
of each data error using these correction candidate representations and a few user labels.

Figure 5.1 illustrates the workflow of Baran. Given as input a dirty dataset with marked
data errors, the data cleaning toolbox, and the user feedback, Baran fixes data errors in the
input dirty dataset and returns a cleaned version of the dataset through the following steps.

Step 1: Initializing error corrector models. Baran initializes the error corrector models
of the toolbox based on the structural characteristics of the dataset. The models have to learn
the co-occurrences of the clean values in data rows and columns. If the error corrector models
have been already pretrained, Baran incrementally updates them. Otherwise, Baran trains the
error corrector models from scratch on the current dataset. We detail this step in Section 5.1.

Steps 2: Sampling a tuple. Baran samples a tuple in each iteration to be labeled by the
user. Thus, the total number of iterations is bound by the user labeling budget θLabels. To
optimally leverage the limited number of user labels, the set of sampled tuples should cover as
many data error types as possible across all data columns of the dataset. We detail this step
in Section 5.2.

Steps 3: Labeling data cells. Baran asks the user to fix the marked data errors in the
sampled tuple.

Step 4: Fine-tuning error corrector models. Baran updates the error corrector models
based on the user-corrected data errors. We need to define a unified model for all different
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Baran: Error Correction System
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Figure 5.1: The workflow of Baran.

error corrector models so that we can incrementally update all of them in the same way with
every new user-corrected data error. We detail this step in Section 5.1.

Steps 5: Generating correction candidates. Each error corrector model proposes various
correction candidates for each data error. We need to effectively and efficiently process all
these correction candidates for all these data errors. We detail this step in Section 5.3.

Steps 6: Generating feature vectors. Baran generates a feature vector for each pair of a
data error and a correction candidate. The feature vector has to represent the mutual fitness
of one particular correction candidate for one particular data error. We detail this step in
Section 5.3.

Steps 7: Training classifiers. Baran trains a binary classifier per data column based on the
feature vectors and the user labels. The binary classifier has to decide whether a correction
candidate is the actual correction of a data error or not. We detail this step in Section 5.3.

Steps 8: Predicting final corrections. Baran applies the trained classifiers to predict the
final correction for the rest of the data errors. Baran iteratively repeats the steps 2–8 until the
user labeling budget θLabels is depleted.

Algorithm 2 also shows the main steps of Baran in pseudocode. Baran first initializes the
error corrector models (line 1). Baran then iterates as long as the user labeling budget is
not depleted (lines 4–16). In each iteration, Baran first samples and labels a tuple and then
updates the error corrector models accordingly (lines 5–8). Next, it generates a feature vector
for each pair of a data error and a correction candidate, trains a classifier per data column,
and predicts the final correction of data errors (lines 9–16).

We first elaborate the error corrector models. We then explain the tuple sampling and
labeling method. Next, we elaborate the feature vector generation and classification step.
Finally, we summarize the chapter.
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5.1 Error Corrector Models

Algorithm 2: Baran(d, E, M , θLabels).
Input: dataset d, set of data errors E, set of error corrector models M , user labeling budget θLabels.
Output: cleaned dataset d∗.

1 M ← initialize the error corrector models;
2 d∗ ← d; // the cleaned dataset
3 L← {}; // set of labeled tuples
4 while |L| < θLabels do
5 t∗ ← draw a tuple that maximizes the tuple scoring formula P (t);
6 ask the user to fix data errors in the tuple t∗;
7 L← L ∪ t∗;
8 M ← update the error corrector models with the tuple t∗;
9 for each data column j ∈ [1, |A|] do

10 Vj ← {}; // feature vectors
11 for each data error e ∈ Ej do
12 Ce ← set of all correction candidates for the data error e proposed by all the models m ∈M ;
13 for each correction candidate c ∈ Ce do
14 Vj ← Vj∪ generate a feature vector for the pair (e, c);

15 ϕj ← train a classifier using feature vectors Vj and labels L;
16 d∗ ← apply the classifier ϕj to predict the final correction of data errors Ej ;

5.1 Error Corrector Models

An error corrector model is any algorithm that can propose correction candidates to a data
error based on a logic that uses a data error context. For example, a simple script that rounds
float numbers could be an error corrector model. Baran leverages these error corrector models
as base error correctors that propose potential correction candidates for each data error.

Ideally, we want to fix all data errors of the dataset accurately, without any user involvement.
Therefore, the set of error corrector models should be ideally complete and contain correct and
automated base error correctors. In fact, their combination should be able to fix all the data
errors (completeness) accurately (correctness) without any user involvement (automation).
Choosing and aggregating base error correctors under these three requirements simultaneously
is not possible because there is typically a trade-off among them.

For example, a data scientist may assess a dataset and then write a script to transform
wrongly formatted date values “dd/mm/yyyy” to the format “dd.mm.yyyy”. Although this
base error corrector is accurate, it involves the user (not automated) and may not fix other
potential data errors (not complete). Therefore, we have to handle the natural trade-off of
correctness, completeness, and automation while designing the set of base error correctors.

We address this trade-off by first ignoring the precision of the base error correctors. Each of
our error corrector models is designed to leverage one context of a data error to fix it. The error
corrector models automatically propose as many potential correction candidates as possible in
the first place. This way, we increase the achievable recall bound by automatically generating
a set of potential corrections. Of course, many of these potential data corrections might be
irrelevant. However, we will avoid false positives later as well, when we train classifiers on top
of these automatically proposed correction candidates.

While we propose a default and general set of base error correctors, which together leverage
all data error contexts to identify prevalent real-word data error types, the set of base error
correctors can be extended with optional custom user-provided algorithms. In particular, the
user can optionally implement data constraints in the form of error correctors and incorporate
them into our data cleaning toolbox. This way, Baran generalizes the previous data cleaning
aggregators [68, 74] as we consider the base error correctors as black boxes.

We design a set of error corrector models, each of which leverages one context of a data
error in the form of a heuristic. To keep the error corrector models simple, general, and
incrementally updatable, we define an error corrector model m formally as the conditional
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probability
P (c|em) = count(c|em)

count(em) , (5.1)

where em is a context of the data error e that the model m uses; count(em) is the number of
times that the data error context em is observed; and count(c|em) is the number of times that
the context em is leveraged to fix the data error e to the correction c. The intuition is that
the more often a data error context em is leveraged to fix a data error e to a correction c, the
more it is likely that the correction candidate c will be the actual correction of the data error e.
Note that we can incrementally update this model by storing count(c|em) and count(em) for
each pair combination of a data error context em and a correction candidate c.

We design three types of error corrector models based on the three data error contexts to be
able to fix data errors with respect to all their value-based, vicinity-based, and domain-based
contextual information. The abstract definition of error corrector models in Equation 5.1 needs
to be implemented for each type of error corrector models, accordingly. In fact, the exact
identification of the data error context em and the correction candidate c depends on the type
of each error corrector model.

5.1.1 Value-Based Error Corrector Models

Value-based error corrector models learn to fix data errors e using only the erroneous value
itself [38]. A value-based model applies fine granular substring transformations, which are
learned from previous training value-based corrections, to erroneous values. Here, the data
error e and its context eval = d[i, j] are identical. Whenever an erroneous value eval is corrected
to a value e∗val, Baran updates the value-based error corrector models by encoding the erroneous
value and its correction operation.

5.1.1.1 Erroneous Value Encoding

Abstracting erroneous values is an essential technique for training value-based error corrector
models as it enables us to generalize correction operations to similar data values. There are
different levels of abstraction to encode data values, such as abstracting the character category
or the string length. We leverage two simple and general encoders to support both syntactic
and semantic value-based corrections.

1. Identity encoder. The identity encoder encodes the data value with its original
characters. This encoding is suitable for fixing semantic errors. For example, to fix the
erroneous value “Holland” to “Netherlands”, our value-based error corrector models need
to see the exact erroneous value “Holland”.

2. Unicode encoder. The Unicode encoder encodes each character of a data value with its
equivalent Unicode category [90]. For example, an uppercase character will be replaced
with its category symbol “<Lu>” and a number will be replaced with its category
symbol “<Nd>”. This encoding enables the value-based models to learn syntactic error
corrections faster by generalizing the syntax of data errors.

Example 14 (Erroneous value encoding). Considering the erroneous value eval =
“16/11/1990” and the corrected value e∗val = “16.11.1990”, we have two methods to encode
this erroneous value.

The identity encoder encodes the erroneous value with its original characters: Whenever an
erroneous value is equal to “16/11/1990”, a potential correction operation could be to replace
“/” with “.”. Although the identity encoder is effective in terms of precision, its recall is not
satisfying as it is not extendable to other erroneous values.
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On the other hand, the Unicode encoder encodes this erroneous value by abstracting
its characters to their Unicode category: Whenever an erroneous value is in the format
“<Nd><Nd><Po><Nd><Nd><Po><Nd><Nd><Nd><Nd>”, a potential correction operation could be
to replace “/” with “.”. The Unicode encoder is more in favor of recall than precision as all
the erroneous values with the same format will be mapped to the same encoding. □

5.1.1.2 Correction Operation Encoding

After encoding the erroneous value, we need to encode the required correction operations. In
general, there are four kinds of correction operators that can be applied to any erroneous value.

1. Remover operator. The remover operator removes substrings. For example, if we
want to fix the erroneous value “U.S.” to the value “US”, the remover operator can
remove “.”.

2. Adder operator. The adder operator adds substrings. For example, if we want to fix
the erroneous value “US” to the value “U.S.”, the adder operator can add “.”.

3. Replacer operator. The replacer operator both removes and adds substrings
simultaneously. For example, if we want to fix the erroneous value “16/11/1990” to the
value “16.11.1990”, the replacer operator can remove “/” and, instead of it, add “.”.

4. Swapper operator. The swapper operator, which is a special case of the replacer
operator, substitutes the entire erroneous value with another value. While the previous
value-based operators are suitable for syntactic errors, the swapper operator is useful for
fixing semantic errors. For example, if we want to fix the erroneous value “Holland” to
the value “Netherlands”, the swapper operator can substitute these data values.

With this set of operators, we can generate any value-based correction. We train value-
based models, each of which learns to perform one of these correction operations on an encoded
erroneous value. Given a user-corrected data error, Baran calculates the difference of the
erroneous value eval and the corrected value e∗val on the character level, according to the diff
checking technique [46], and extracts training data for each operator.

Example 15 (Diff checking). Considering the erroneous value eval = “Chris Edward NoLan”
and the user-corrected value e∗val = “Christopher Nolan” as the source and target sequences of
characters, the output of diff checker algorithm is as follows:

diff(eval, e∗val) =


Add “topher” after “Chris”.

Remove “Edward ”.

Replace “L” with “l”.

Thus, we can update the corresponding value-based models of all the four operators with this
user-corrected example. For example, the value-based model with the identity encoder and
the adder operator learns to add the substring “topher” after the substring “Chris” in the
erroneous value “Chris Edward NoLan”. □

To implement the abstract definition of error corrector models in Equation 5.1, a value-based
model considers the encoded erroneous value encode(eval) as the context em and the correction
operation o that has to be applied to this erroneous value as the correction candidate c.
Formally,

P (c|em) = P (o|encode(eval)) = count(o|encode(eval))
count(encode(eval))

. (5.2)

Overall, we have 2 × 4 = 8 value-based error corrector models because of 2 erroneous value
encoders and 4 correction operators.
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Table 5.1: A dirty dataset d with marked data errors (left) and its ground truth d∗ (right).

ID Name Address
1 H 5th Str
2 Hana -
3 Gandom 7th Street
4 Chris 9th Str

ID Name Address
1 Hana 5th Street
2 Hana 5th Street
3 Gandom 7th Street
4 Christopher 9th Street

Example 16 (Value-based error corrector models). Assume that we have a value-based
error corrector model equipped with the identity encoder and the swapper operator. Assume
that the model encounters the erroneous value “Holland” 5 times in different parts of the dataset,
i.e., count(encode(eval)) = 5. Assume that the user fixes this data error to “Netherlands” 4
times, and to “HL” 1 time. Let us call these two swapping operations “Holland” to “Netherlands”
and “Holland” to “HL” o1 and o2, respectively.

Therefore, this value-based error corrector model proposes two correction candidates
“Netherlands” with P (o1|encode(eval)) = 0.8 and “HL” with P (o2|encode(eval)) = 0.2 for any
detected data error e that holds the value “Holland”. □

5.1.2 Vicinity-Based Error Corrector Models

Vicinity-based error corrector models learn to fix data errors based on data column relationships.
A vicinity-based model proposes clean values of the active domain as potential corrections
based on their relationship with clean values of other data columns. Similar to the error
detection strategies discussed in Section 4.1, we limit all kinds of data column relationships
and correlations [3] to functional dependencies that have one attribute on their left-hand side.
This way, we reasonably limit the exponential space of all the functional dependencies as these
functional dependencies have been known to be more useful for data cleaning [64].

To implement the abstract definition of error corrector models in Equation 5.1, we consider
every j1 → j2 to be a functional dependency for each pair of data columns ∀j1 ̸= j2 ∈ [1, |A|].
For each functional dependency j1 → j2, a vicinity-based model considers the clean co-occurring
value d[i, j1] in the vicinity context evic = d[i, :] as the context em and the clean value d[i, j2]
as the correction candidate c. Formally,

P (c|em) = P (d[i, j2]|d[i, j1]) = count(d[i, j2]|d[i, j1]))
count(d[i, j1]) . (5.3)

This conditional probability shows how often the left-hand-side value d[i, j1] determines the
right-hand-side value d[i, j2].

Overall, we have |A| × (|A| − 1) vicinity-based error corrector models as we consider the
functional dependencies from and to each attribute.

Example 17 (Vicinity-based error corrector models). Table 5.1 shows a dirty dataset
with its already detected data errors marked in red. The goal is to fix these data errors and
generate the depicted cleaned dataset d∗.

Considering the functional dependency Name → Address, a vicinity-based model learns that
a name value “Gandom” must always have the address value “7th Street”. Thus, the correspond-
ing vicinity-based model proposes one correction candidate P (“7th Street”|“Gandom”) = 1.0
for any data error e in the data column Address whose neighboring value in the neighboring
data column Name is “Gandom”. □
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5.1.3 Domain-Based Error Corrector Models

Domain-based error corrector models learn to fix data errors using the existing values inside
their data columns. We consider each data column as a domain and propose a set of domain-
based error corrector models, accordingly. A domain-based model proposes the most relevant
clean values from the active domain as potential corrections. As tuples inside a dataset are
generally independent of each other, the order, distance, or neighborhood of values inside a
data column does not indicate any relevance. However, the frequency of clean values can be
used as a signal to estimate their relevance. More frequent clean values inside a data column
are more likely to also be corrections for a data error in the same data column.

To implement the abstract definition of error corrector models in Equation 5.1, a domain-
based model considers the domain context edom = d[:, j] as the context em and each clean
value inside this domain as the correction candidate c. Formally,

P (c|em) = P (d[i, j]|edom) = count(d[i, j]|edom)
count(edom) , (5.4)

where count(edom) is the number of clean values and count(d[i, j]|edom) is the frequency of the
clean value d[i, j] in the active domain of the data error. This conditional probability shows
the chance of observing a clean value d[i, j] in the data column j.

Overall, we have one domain-based error corrector model per data column, resulting in |A|
domain-based models.

Example 18 (Domain-based error corrector models). Considering the clean values of
the data column Name in Table 5.1, a domain-based model learns that all the clean values
have the same probability to be a correction candidate for each data error inside this data
column as they all appear just once.

Thus, the corresponding domain-based model proposes two correction candidates “Hana”
with P (“Hana”|Name) = 0.5 and “Gandom” with P (“Gandom”|Name) = 0.5 for any data
error e in the data column Name. □

5.2 Tuple Sampling and Labeling

The trained error corrector models generate various potential corrections for any data error
using its value, vicinity, and domain contexts. We need to identify the actual correction among
all the proposed potential corrections with respect to user’s preferences.

Baran incorporates user supervision in the form of a limited number of manual correction
examples. It leverages these examples to update all the error corrector models and to train
classifiers. To sample tuples for user labeling, Baran follows an iterative procedure. In each
iteration, Baran draws a tuple t∗ that maximizes the tuple scoring formula

t∗ = argmax
t∈d

∏
d[i,j]∈t∩E′

j

exp(
|E′j |
|Ej |

) exp(
count(d[i, j]|E′j)

|E′j |
), (5.5)

where Ej is the set of all data errors in the data column j; E′j is the set of those data errors in
the data column j that have not been fixed yet; and count(d[i, j]|E′j) is the number of unfixed
data errors in the data column j whose value is exactly d[i, j].

This scoring formula benefits tuples that (1) contain more unfixed data errors, (2) their
data errors reside in data columns that have a high number of unfixed data errors, and (3)
their erroneous values are frequent among the unfixed data errors. This way, Baran obtains
informative labeled data points for the classifiers of underlabeled data columns. Once the user
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fixes data errors of the sampled tuple t∗, the value-based, vicinity-based, and domain-based
models will be updated accordingly.

Example 19 (Updating error corrector models). Assume that Baran samples the first
tuple of the dataset in Table 5.1 and the user fixes the data errors in this tuple.

Therefore, the value-based models will be updated with the new example of the erroneous
value “5th Str” that is corrected to the value “5th Street”. In particular, a value-based model
with the Unicode encoder and the adder operator learns to add the substring “eet” after the
substring “Str” for all encounters of erroneous values with a similar pattern to the value “5th
Str”. The corresponding vicinity-based model of the functional dependency Name → Address
will be updated with a new association between the value “Hana” and the value “5th Street”.
Furthermore, the domain-based model of the data column Address will be updated as now we
have two clean values in this data column. □

5.3 Feature Vector Generation and Classification

We can now leverage the user labels to define a classification task that predicts the final
correction of each data error.

A straightforward approach is to define a multiclass classification task, where each correction
candidate resembles a target class and the classifier has to choose one of these target classes
for each data error. However, formulating this classification task as a multiclass classification
leads to the sparsity issue of the feature vector [12]. In the use case at hand, the feature vector
has to encode the probabilities of all the error corrector models for each correction candidate.
Formally, the feature vector of a data error e would be v(e) = [P (c|em) | ∀m ∈ M, ∀c ∈ C],
where M is the set of all the error corrector models and C is the set of all the correction
candidates. Thus, the size of the feature vector would scale with the number of correction
candidates, while not every correction candidate is relevant for each data error. As a result,
there will be many zero elements in the feature vector.

Example 20 (The sparsity issue of the multiclass classification). Assume that we have
20 error corrector models, each proposing 100 correction candidates for any data error. In the
multiclass classification task, we have to encode all the 20 × 100 = 2000 model probabilities
into the feature vector of each data error. □

To avoid the sparsity issue of the multiclass classification, we formulate the classification
task as a binary decision. The role of the binary classifier is to decide whether a correction
candidate is the actual correction of a data error or not. We generate a feature vector that
represents the mutual fitness of one particular correction for one particular data error inside a
data column. Thus, for any combination of a data error e and a correction candidate c, we
collect all the error corrector model probabilities as a feature vector. Formally,

v(e, c) = [P (c|em) | ∀m ∈ M ], (5.6)

where M is the set of all the error corrector models. When a feature vector contains mostly
close-to-one probabilities (i.e., P (c|em) ≈ 1.0 for most of the models m ∈ M), it is more likely
that the correction candidate c is the actual correction of the data error e; Because, in this
case, most error corrector models with high confidence propose this correction candidate for
this data error.

Hence, the set of feature vectors of data errors inside a particular data column j is

Vj = {v(e, c) | ∀e ∈ Ej , ∀c ∈ Ce}, (5.7)
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where Ej is the set of all the data errors in the data column j and Ce is the set of all correction
candidates for a data error e. The number of feature vectors depends on the number of
correction candidates that the error corrector models propose.

This feature representation has three benefits in contrast to the feature representation of
the multiclass classification task.

1. This feature vector is small and dense. The number of features is equal to the number of
error corrector models and the ratio of non-zero features is higher because the considered
models are relevant for the pair at hand.

2. This feature representation leads to fast performance convergence with only a few user
labels as we can transform one user label into several training data points. Assume
that the user fixes the data error e with the correction c∗. Baran extends this one user
label into multiple training data points. Naturally, we have a positive data point that
indicates the correction c∗ ∈ Ce is the actual correction of the data error e. Furthermore,
we have many negative data points that indicate all the corrections c ∈ Ce\{c∗} are not
the actual correction of the data error e.

3. This highly imbalanced training set, with a few positive and a large number of negative
data points, makes our classifier conservative in predicting a correction. In fact, our
classifier is more biased towards the negative class and prevents false positive corrections.
That is why the precision of Baran is generally high.

Instead of training one classifier for the whole dataset, we train one binary classifier per
data column because data errors, their required correction techniques, and the usefulness of
their contexts are better comparable inside their domain. Although Baran trains one classifier
per data column, it preserves all inter-column dependency signals via the vicinity-based error
corrector models, which are encoded as features for each pair of a data error and a correction
candidate. The vicinity-based models propose correction candidates for a data error based on
the functional dependency of the given data column with a different data column.

In each iteration, Baran trains all the classifiers and applies each to all data errors of the
corresponding data column. The classifiers do not overwrite the user-provided corrections. For
each pair of a data error e and a correction candidate c, the corresponding classifier predicts a
label with a confidence score. For a data error e, the classifier can determine zero or multiple
correction candidates c as the final corrections. If the binary classifier predicts the label 0
for every correction candidate, no final correction will be selected for the corresponding data
error. If it predicts the label 1 for multiple correction candidates, Baran selects the correction
candidate with the highest confidence score as the final correction. This iterative procedure
is repeated as long as the user labeling budgent is not depleted, i.e., |L| < θLabels, where |L|
is the number of labeled tuples. Baran considers the output of the last iteration as the final
system output.

Example 21 (Feature vector generation and classification). Considering the data
column Address in Table 5.1, the following table contains pairs of data errors and correction
candidates and their corresponding feature vectors. For brevity, we just demonstrate a few
pairs and features. The features are a value-based model with the Unicode encoder and the
adder operator (mUnicode+Adder), a vicinity-based model (mName→Address), and a domain-based
model (mAddress). The first two pairs are labeled as the user already validated the first tuple
of our toy dataset in Example 19.
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Error Correction mUnicode+Adder mName→Address mAddress Label
5th Str 5th Street 1.0** 1.0* 0.5 1
5th Str 7th Street 0.0 0.0 0.5 0

- 5th Street 0.0 1.0* 0.5
- 7th Street 0.0 0.0 0.5
9th Str 5th Street 0.0 0.0 0.5
9th Str 7th Street 0.0 0.0 0.5
9th Str 9th Street 1.0** 0.0 0.0

The classifier of the data column Address receives these pairs as data points. It trains
with the first two labeled data points and then predicts the label of the rest of unlabeled data
points.

The classifier predicts the value “5th Street” as the final correction of the erroneous value “-”
because of the vicinity-based feature mName→Address (marked with *). This model returns
the probability of 1.0 for the pair (“-”, “5th Street”) because, after labeling the tuple 1 and
updating the models in Example 19, the vicinity-based model learned the association of the
value “Hana” in the data column Name and the value “5th Street” in the data column Address.

Furthermore, the classifier predicts the value “9th Street” as the final correction of the
erroneous value “9th Str” because of the value-based feature mUnicode+Adder (marked with **).
This model returns the probability of 1.0 for the pair (“9th Str”, “9th Street”) because the
data error “5th Str” matches the erroneous value “9th Str” based on the Unicode encoding
and the correction candidate “9th Street” is generated with the same adder operator that
generates the correction candidate “5th Street” for the erroneous value “5th Str”. □

5.4 Summary

Baran is a a novel error correction system that fixes data errors with respect to their value,
vicinity, and domain contexts. Using these data error contexts, Baran trains multiple error
corrector models that propose various correction candidates for each data error. Baran then
samples a few informative tuples for user labeling. Finally, Baran featurizes each pair of a
data error and a correction candidate and trains a classifier per data column to predict the
final correction of each data error.

Our novel two-step formulation of the error correction task allows Baran to achieve both
high precision and recall using only a few user labels. First, the error corrector models generate
many correction candidates that increase the achievable recall bound of Baran. Then, Baran
incorporates human supervision using a few labeled tuples to accurately identify the actual
correction of each data error among the set of all correction candidates.
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6
Data Cleaning Optimization: The

Transfer Learning Engine

Although a dataset can be cleaned by itself, it is desirable to learn from previous data cleaning
experiences on historical datasets to optimize the current data cleaning task. However, learning
from previous data cleaning tasks is challenging as the dirty datasets could be heterogeneously
different. In particular, identifying the similarities of these heterogeneous datasets in terms of
their data quality issues and required data cleaning treatments is not trivial.

We have designed our data cleaning approach in a way that it can optionally optimize
the current data cleaning task by learning from previous data cleaning efforts. In particular,
both Raha and Baran can conduct transfer learning to leverage historical datasets in the first
step of our two-step task formulation. In error detection, Raha leverages previously cleaned
datasets to estimate the effectiveness of error detection strategies on the current dataset. In
error correction, Baran leverages previously cleaned datasets to pretrain error corrector models
for the current dataset.

We first elaborate our method to estimate the effectiveness of error detection strategies.
Then, we detail our method to pretrain error corrector models. Finally, we summarize the
chapter.

6.1 Estimating the Effectiveness of Error Detection Strategies

Error detection aggregators internally combine multiple base error detection strategies.
Estimating the effectiveness of these base error detection strategies is useful as we can remove
ineffective strategies for a given dataset. Filtering out ineffective error detection strategies
is beneficial in two different ways. First, it improves the overall effectiveness of existing
error detection aggregators, such as maximum entropy-based approach [2], as their overall
effectiveness is dependent on the effectiveness of their base error detection strategies. Second,
filtering out ineffective base strategies upfront improves the overall efficiency of Raha as it can
stop running the irrelevant base error detection strategies on the current dataset.

A straightforward approach is to run all the error detection strategies on the dirty dataset
and evaluate their effectiveness on a data sample [2]. This way, the user can select only the most
effective error detection strategies for the error detection aggregator. However, this approach
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Table 6.1: The features of the dirtiness profile.

Category Name Encoding

Content Features Most Frequent Word Values of Data Columns One Hot
Most Frequent Cell Values of Data Columns One Hot

Structure Features

Fraction of Unique Cell Values Float
Fraction of Explicitly Missing Cell Values Float
Fraction of Alphabetical Cell Values Float
Fraction of Numerical Cell Values Float
Fraction of Punctuation Cell Values Float
Fraction of Miscellaneous Cell Values Float

Quality Features
Normalized Raw Output Size of Each Strategy Float
Normalized Raw Output Overlap of Each Pair of Strategies Float
Sample Precision of Each Strategy (Optional) Float

suffers from two limitations. First, the user has to run all the error detection strategies on
each new dataset, which could be time consuming. Second, the user has to evaluate all the
error detection strategies on a data sample, which could be tedious.

Therefore, it is desirable to estimate the effectiveness of error detection strategies upfront,
without having to run and evaluate them on any new dataset.

Problem 3 (Estimating the effectiveness of error detection strategies). Suppose
D = {d1, d2, ..., d|D|} is a set of historical datasets with the corresponding ground truths
D∗ = {d∗1, d∗2, ..., d∗|D|}. Suppose S = {s1, s2, ..., s|S|} is the set of available error detection
strategies. Given a new dataset dnew, the problem is to estimate the effectiveness (i.e., the
F1 score) of each strategy s on the new dataset dnew, i.e., F̂ (s, dnew), ∀s ∈ S. □

Our intuition is that, on similarly dirty datasets, the same error detection strategies will
perform similarly well. To define similarity based on dirtiness, we introduce the novel concept
of a dirtiness profile, which is composed of various metadata features. Mapping each dataset
to its dirtiness profile, we design methods to estimate the effectiveness of the error detection
strategies on the new dataset based on the similarity of dirtiness profiles.

We first detail the concept of dirtiness profile. Then, we elaborate our algorithms to
estimate the effectiveness of the error detection strategies using the dirtiness profiles. Finally,
we detail how estimating the effectiveness of the error detection strategies improves the overall
error detection performance.

6.1.1 Dirtiness Profile

Similar datasets should require similar error detection efforts as well. The similarity of
datasets can be defined with regard to different dimensions. Content-based and structure-
based similarities are typical similarity dimensions for comparing two datasets [71, 3]. However,
these similarity dimensions are not enough for comparing datasets as two datasets with almost
the same content and structure could suffer from different data error types, such as missing
values and typos. Thus, we argue that, in the data cleaning context, the data quality similarity
is another important similarity dimension.

We propose a dirtiness profile that summarizes the content, structure, and quality of a
dataset into metadata features. Table 6.1 shows the features of the dirtiness profile. Our
proposed dirtiness profile has two properties. First, it can be generated for each dataset
automatically, i.e., without any user involvement. Second, it contains both domain-dependent
(i.e., content) features and domain-independent (i.e., structure and quality) features.

42



6.1 Estimating the Effectiveness of Error Detection Strategies

6.1.1.1 Content Features

Content features represent the domain of data. Datasets with similar data domains are likely
to have similar data errors as well. For example, multiple datasets in literature, such as
Hospital [74], Address [2], and Beers [43], contain the data domains ZIP, City, and State. For
these content-wise similar datasets, applying the same rule violation detection strategy that
marks data cells violating the functional dependencies ZIP → State and City → State as data
errors is typically promising. Therefore, to capture the content similarity, the dirtiness profile
should leverage features that describe data domains of datasets.

Our dirtiness profile contains the most frequent words and cell values of each data column
as features to represent the content of the dataset. This way, datasets with similar data
domains (e.g., City and Capital) would have similar dirtiness profiles because of the same
overlapping data values.

6.1.1.2 Structure Features

The structure of a dataset can be represented by various metadata. Error detection strategies
are likely to have similar effectiveness on datasets with certain data value structures. In
particular, the data type distribution of data columns is a key characteristic to estimate
the effectiveness of error detection strategies. For example, on datasets that mainly contain
numerical data values, outlier detection strategies could be more effective than rule violation
detection strategies. Therefore, to capture the structural similarity, the dirtiness profile should
leverage features that describe the distribution of data value types of datasets.

Our dirtiness profile contains the fraction of unique, explicitly missing, alphabetical,
numerical, punctuation, and miscellaneous data values as features to represent the structure
of each dataset. This way, datasets with similar distributions of data value types would have
similar dirtiness profiles.

6.1.1.3 Quality Features

Datasets with similar data error distributions need similar error detection treatments as well.
Ideally, the data error distribution should represent the fraction of each existing data error
type in the dataset. For example, if we know that 5% of a dataset are outliers and 25% of the
same dataset are rule violations, then the rule violation detection strategy is a more effective
approach for this dataset rather than the outlier detection strategy.

However, it is not trivial to accurately calculate the distribution of data error types for a
given dataset. We can evaluate the output of error detection strategies on a data sample to
estimate the distribution of data error types [2].

Example 22 (Manual evaluation of error detection strategies). Suppose we evaluate
the output of a typo detection strategy on 1% of a dataset. Suppose 10 actual typos are
identified by the user on this data sample. Assuming that the dataset has 2500 rows and 20
columns, we can extrapolate our observation to estimate 10×100

2500×20 = 2% of data values as typos.
Therefore, we could estimate the fraction of typos in the dataset. □

The manual evaluation of error detection strategies is expensive as it needs the user to
evaluate the output of all the strategies on a data sample.

Thus, it would be desirable to have an alternative set of automatically extractable features
to represent the quality of datasets. To represent data quality, our features should be defined
based on the output of error detection strategies as they mark certain data error types. To be
automatically extractable, the feature generation process must not involve the user to evaluate
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the output of the error detection strategies. Therefore, we design our features based on the
raw output of the strategies. In particular, we leverage the raw output size and overlap of
error detection strategies on datasets.

The output size of a specific error detection strategy might correlate with the actual number
of data errors. For example, the number of marked data cells by a rule violation detection
strategy hints at how many actual rule violations exist in the dataset. Thus, datasets that are
associated with similar raw output sizes might be similarly dirty. Let Osize(s, d) be the fraction
of data cells that the strategy s marks as data errors in the dataset d. For all the available
error detection strategies s ∈ S, we consider the Osize(s, d) as a feature in the dirtiness profile
of the dataset d.

The output overlap of error detection strategies captures the agreement of error detection
strategies on a particular dataset. When two strategies have strongly overlapping raw outputs
on a dataset, they should also be similarly effective on this dataset. Let Ooverlap(sα, sβ , d) be
the fraction of data cells that both strategies sα and sβ mark in the dataset d as data errors.
For all the pairs of strategies sα ̸= sβ ∈ S, we consider Ooverlap(sα, sβ , d) as a feature in the
dirtiness profile of the dataset d.

For the sake of completeness, we can also incorporate sample precision of strategies as
optional user-provided features. Our system, i.e., REDS [55], is able to adequately estimate
the effectiveness of strategies without this feature group. Note that measuring the recall and
therefore F1 score of error detection strategies on a data sample is not possible as we have no
information about false and true negatives [2].

6.1.2 Estimation Algorithm

We can now calculate the similarity of datasets using their dirtiness profiles. However, we still
need algorithms to estimate the effectiveness of error detection strategies using the similarity
of datasets.

We design two methods based on two different assumptions separately. The first method is
based on the assumption that the user can run the error detection strategies on the current
dataset and optionally evaluate them on a data sample. The second method is based on the
assumption that the user cannot run the error detection strategies on the current dataset at all
and she needs to estimate their effectiveness without having the raw output of the strategies.

6.1.2.1 Estimation with Running Strategies

In many error detection scenarios, optimizing runtime is not a critical objective. Thus, the
user has enough time to run all the error detection strategies on the dirty dataset and collect
their raw output. The user might also optionally evaluate the strategies on a data sample.
Therefore, we can generate a full dirtiness profile for each dataset, including the content,
structure, and quality features.

Having the full dirtiness profiles, we estimate the effectiveness of error detection strategies
by training regression models. Let Z = {z1, z2, ..., z|S|} be the set of |S| independent regression
models, as many as the number of error detection strategies. Each regression model zj learns
to estimate the effectiveness of one specific error detection strategy sj on the new datasets.

In the training phase, which is offline, each regression model zj takes as input the
set of training data points, i.e., the historical dirtiness profiles Vtrain = {⟨vd1 , F (sj , d1)⟩,
⟨vd2 , F (sj , d2)⟩, ..., ⟨vd|D| , F (sj , d|D|)⟩}. Here, vdi

is the dirtiness profile of the dataset di and
F (sj , di) is the target value, i.e., the F1 score of the error detection strategy sj on the dataset di.
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In the prediction phase, which is online, each regression model zj takes as input the new
dirtiness profile vdnew of the new dataset dnew and estimates the F1 score of each error detection
strategy sj , i.e., F̂ (s, dnew), ∀s ∈ S.

6.1.2.2 Estimation without Running Strategies

In some error detection scenarios, optimizing runtime is also an important objective. Thus,
the user cannot run all the error detection strategies on the new dataset to select the most
promising ones as running all the strategies could be time consuming. Therefore, we need a
method that estimates the effectiveness of error detection strategies without running them on
the new dataset.

Estimating the effectiveness of error detection strategies is more challenging in this scenario
for two reasons. First, we cannot generate a full dirtiness profile for each new dataset as the
quality features of the dirtiness profile require the raw output of error detection strategies.
Without the full dirtiness profile features, we cannot leverage the previous regression-based
method to estimate the effectiveness of strategies. Second, without having the raw output of
error detection strategies, mapping the strategies across datasets is more challenging as we
cannot compare the strategies based on their raw outputs on different datasets. In particular,
the schema-dependent error detection strategies, such as rule violation detectors, cannot easily
be transferred across different datasets as each dataset requires different integrity rules based
on its own schema.

To alleviate the first challenge, we define the concept of column profiles, which is the
dirtiness profile of a data column. In the lack of quality features, each column profile contains
the content and structure features of one particular data column. Likewise, the idea is that on
similar data domains, similar error detection strategies will perform similarly. For example, on
a data column City, we need to run only those error detection strategies that performed well
on the data column Capital of some historical datasets. Instead of generating the dirtiness
profile for the whole dataset, we generate a profile for the finer granular data columns because
the remaining content and structure features of the dirtiness profile represent a data domain
more effective than the whole dataset.

To address the second challenge, we design an algorithm that systematically adapts
and predicts the promising error detection strategies for a new data column based on their
effectiveness on other similar data columns. This way, Raha can select the top-ranked adapted
strategies and filter out the rest.

Algorithm 3 shows how we leverage the similarity between a new data column dnew[:, j]
and a historical data column d[:, j′] to select the promising error detection strategies for the
data column dnew[:, j]. The algorithm consists of four main steps.

First, the cosine similarity between the profile of each data column dnew[:, j] of the new
dataset dnew and the profile of each data column d[:, j′] from any historical dataset d ∈ D is
computed (line 7).

Second, the algorithm retrieves the stored F1 score of the strategy s on the historical data
column d[:, j′], i.e., F (s, d[:, j′]) (line 9).

Third, the algorithm might need to modify the strategy s to make it compatible to run on
the new data column dnew[:, j] (line 10). For an outlier detector, a pattern violation detector,
or a knowledge base violation detector, a modification is not necessary. Raha can simply run
the same strategy on the new data column. However, for a rule violation detection strategy,
which is schema dependent, Raha needs a modified strategy as the integrity rules have to be
updated based on the schema of the new dataset.
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Example 23 (Error detection strategy adaptation). Suppose we have a functional
dependency checker sj′

1→j
′
2

that has detected data errors on the data columns d[:, j′1] and d[:, j′2]
of the historical dataset d. Suppose the algorithm identifies the historical data column d[:, j′1]
similar to the new data column dnew[:, j].

Therefore, the algorithm translates the strategy sj′
1→j

′
2

to the strategy sj→q for the new
dataset dnew. To adapt the strategy sj′

1→j
′
2
, the algorithm replaces the data column d[:, j′1]

with its corresponding data column dnew[:, j] and the data column d[:, j′2] with its most similar
data column dnew[:, q] inside the new dataset. □

Fourth, the algorithm assigns a score to each updated error detection strategy s′ (line 11).
The score is the product of the similarity of the data columns dnew[:, j] and d[:, j′] and the
F1 score of the strategy s on the data column d[:, j′]. Formally,

score(s′) = similarity(dnew[:, j], d[:, j′]) × F (s, d[:, j′]). (6.1)

The score will be high if the data columns dnew[:, j] and d[:, j′] are similar and the strategy s
has had a high F1 score on the data column d[:, j′], indicating that the updated strategy s′

will be promising for the data column dnew[:, j].
We can sort the scored strategies S′j for each data column dnew[:, j] to pick only top-scored

strategies per data column. A threshold-free approach to select the most promising subset of
the strategies is to apply a gain function [4]. The idea is to add the top-scored strategies s∗ ∈ S′j
iteratively to the set of promising strategies S∗j (lines 13 to 18), until adding the next best
strategy decreases the following gain function [4], where the gain reaches a local maxima.
Formally,

gain(S∗j ) =
∑
s∈S∗

j

score(s) − 1
2

∑
s∈S∗

j

∑
s′ ̸=s∈S∗

j

|score(s) − score(s′)|. (6.2)

In the end, the set of promising error detection strategies S∗ is the union of the promising
strategies over all the data columns (line 19).

Algorithm 3 iterates over all the historical datasets (line 4) and their data columns (line 5).
Alternatively, it is possible to create data column indices such as MinHash [14] to quickly find
relevant historical datasets and data columns for a new data column. However, we ignore this
optimization as the number of historical cleaned datasets is usually limited.

6.1.3 Estimation Benefits

Estimating the effectiveness of error detection strategies allows us to filter out ineffective
strategies upfront, without running them on the dataset. In particular, Raha leverages the
column profiles and the strategy filterer algorithm to filter out ineffective error detection
strategies upfront. Therefore, the runtime of Raha significantly reduces as Raha runs only a
promising subset of error detection strategies on the dataset. Although the resulting feature
vectors are also smaller, they are still expressive enough to achieve high effectiveness, as we
will show in the experiments.

6.2 Pretraining Error Corrector Models

Baran is an error correction system that internally aggregates multiple base error corrector
models. The error corrector models can be trained on the current dataset from scratch. In that
case, the correction candidates are either provided by the correct values inside the given dataset
or through user corrections. This approach might face two general limitations. First, the
limited number of user-provided corrections might not be enough to train the error corrector
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Algorithm 3: StrategyFilterer(dnew, S, D, D∗).
Input: new dataset dnew, set of error detection strategies S, set of historical datasets D, set of historical

ground truths D∗.
Output: set of promising error detection strategies S∗.

1 for each data column j ∈ [1, |Anew|] of the dataset dnew do
2 S′

j ← {}; // set of all adapted strategies for the data column j

3 pdnew[:,j] ← generate a profile for the data column dnew[:, j];
4 for each dataset d ∈ D do
5 for each data column j′ ∈ [1, |A|] of the dataset d do
6 pd[:,j′] ← generate a profile for the data column d[:, j′];
7 similarity(dnew[:, j], d[:, j′]) ← similarity of the column profiles pdnew[:,j] and pd[:,j′];
8 for each strategy s ∈ S do
9 F (s, d[:, j′])← the F1 score of the strategy s on the data column d[:, j′];

10 s′ ← adapt the strategy s for the dataset dnew;
11 score(s′) ← similarity(dnew[:, j], d[:, j′])× F (s, d[:, j′]) ;
12 S′

j ← S′
j ∪ {s

′};

13 S∗
j ← {}; // set of promising adapted strategies for the data column j

14 do
15 s∗ ← arg max

s∈S′
j

score(s);

16 S∗
j ← S∗

j ∪ {s
∗};

17 S′
j ← S′

j − {s
∗};

18 while adding s∗ to S∗
j does not decrease the gain of the set S∗

j ;

19 S∗ ← ∪|Anew|
j=1 S∗

j ;

models sufficiently. Second, some out-of-dataset corrections might never be found. Fortunately,
our problem formulation allows us to extract additional correction candidates from external
sources to pretrain the error corrector models.

As mentioned in Section 5.1, we have three types of error corrector models. Since the
vicinity-based and domain-based error corrector models are schema dependent, they should be
pretrained on datasets with the same schema. Thus, pretraining them would be straightforward
as the historical data would be a structured dataset with the same schema. The value-based
error corrector models can be schema independent and hence can be pretrained on any dataset
where value-based corrections can be extracted.

Pretraining value-based models on structured datasets with ground truth is again
straightforward as we can simply collect the erroneous and clean values by comparing the
dataset with its ground truth. However, finding these structured datasets with ground truth is
hard as creating ground truth is an expensive task. In the absence of structured datasets with
ground truth, we can resort to non/semi-structured datasets with user-committed corrections.
There are publicly available general-purpose revision histories, such as the Wikipedia page
revision history.

Problem 4 (Pretraining error corrector models). Suppose W is a non/semi-structured
dataset with a revision history. Suppose M = {m1, m2, ..., m|M |} is the set of available value-
based error corrector models. The problem is to extract new value-based corrections from W
and pretrain each value-based model m with them.

Extracting value-based corrections from the revision histories requires two main steps. First,
we need to break down the non/semi-structured revision texts into text segments (i.e., chunks).
Second, we need to align text segments across subsequent revisions to collect value-based
corrections. Here, we briefly discuss the implementation of these steps for the Wikipedia page
revision history as a general-purpose and publicly available revision dataset [59, 95]. To apply
the same approach to other similar revision histories, such as web pages’, we just need to
adapt the text segmenter to the corresponding markup language, e.g., HTML. Naturally, we
can extract more effective value-based corrections for the current data cleaning task when the
historical data is more similar to the dirty dataset at hand.
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Figure 6.1: The Wikipedia page view history.

We first briefly introduce the Wikipedia page revision history. We then explain our
algorithm to segment the Wikipedia page revision texts. Next, we elaborate our method in
aligning the segmented texts to collect new value-based corrections. Finally, we detail how
pretraining the error corrector models with these new value-based corrections improves the
overall error correction performance.

6.2.1 Wikipedia Page Revision History

The Wikipedia page revision history is a rich semi-structured corpus of revision data that
contains terabytes of human-committed revisions. The Wikipedia page revision history is
available in Wikipedia released dumps [91] and also on each web page itself under the “View
History” menu (Figure 6.1). As shown in Figure 6.1, each page revision consists of the revision
data, i.e., the source and the target texts, and the revision metadata, e.g., the timestamp, the
author, and the comments.

Formally, let W = {P1, P2, . . . , P|W |} be the Wikipedia corpus, where each P ∈ W is a
page. Let each page contain a history of all the revised versions P = {r1, r2, . . . , r|P |}, where
each r ∈ P is a revised version of the text of the page P . Here, r1 is the first version and r|P |
is the latest updated version of the page P .

Wikipedia pages are written in the Wikitext markup language (also known as Wiki markup
or Wikicode). This markup language recognizes a set of entities. For example, '''Christopher
Nolan''' (a text inside three single quotations) is an entity that makes the text “Christopher
Nolan” bold and [[Inception]] (a text inside two square brackets) is an entity that creates
a link to another Wikipedia page with the name “Inception” [92].

Example 24 (Wikipedia page revision history). A Wikipedia page P = {r1, r2} with a
history of two revisions could be as follows:

r1 = “'''Chris Nolan''' (born on ''30/07/1970'') is a well-known [[British]] film-maker.”

r2 = “'''Christopher Nolan''' (born on ''30.07.1970'') is a well-known [[English]] filmmaker.” □

6.2.2 Recursive Text Segmentation

A Wikipedia page revision text is semi-structured. Thus, we need to break its free texts down
into segments that are useful for training our value-based error corrector models.
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Algorithm 4: RecursiveTextSegmenter(r).
Input: Wikipedia page revision text r.
Output: list of text segments S.

1 S ← []; // list of text segments
2 recursion(r, S);
3 def recursion(r′, S′):
4 if r′ is text, not a compound entity then
5 S′ ← append the text r′ to the list S′;
6 else
7 for each subentity q ∈ r′ do
8 recursion(q, S′);

Algorithm 4 shows the recursive text segmentation procedure. The algorithm takes a
Wikipedia page revision text in Wikitext markup language as input and recursively breaks
the text down into its entities. The algorithm recursively segments the text because each
Wikitext entity can consist of subentities. For example, '''[[Inception]]''' is a bold entity
(i.e., '''bold''') that contains a link subentity (i.e., [[link]]). In the end, the list of text
segments of the Wikipedia page revision is the output of the algorithm.

Example 25 (Recursive text segmentation). Considering the two Wikipedia page revision
texts r1 and r2 from Example 24, the recursive text segmentor algorithm breaks these two
revision texts down into two lists of text segments:

S1 = [“Chris Nolan”, “(born on ”, “30/07/1970”, “) is a well-known ”, “British”, “ film-maker.”]

S2 = [“Christopher Nolan”, “(born on ”, “30.07.1970”, “) is a well-known ”, “English”, “ filmmaker.”] □

6.2.3 Text Segment Alignment

Having the list of text segments for each Wikipedia page revision, we need to align the
corresponding segments in every consecutive segment list to collect new value-based corrections.

Let S1 and S2 be the text segment lists of two consecutive revisions r1 and r2, respectively.
We again perform diff checking but this time on the segment level to identify which segments
of the first list are transformed to which segments of the second list. We can also tokenize
each segment to have finer granular token alignments.

Overall, we capture value-based corrections accurately, although some of them are not
useful for our use case. In particular, we discard value-based corrections that involve null
values.

Example 26 (Text segment alignment). Considering the two text segment lists S1 and
S2 from Example 25, the alignment of the text segments is as follows:

diff(S1, S2) =


Replace “Chris Nolan” with “Christopher Nolan”.

Replace “30/07/1970” with “30.07.1970”.

Replace “British” with “English”.

Replace “ film-maker.” with “ filmmaker.”.

Thus, we obtain new value-based corrections as training data points, such as fixing “Chris
Nolan” to “Christopher Nolan”. We also tokenize each text segment and increase the training
data points with finer granular value-based correction examples, such as fixing “Chris” to
“Christopher”. □
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6.2.4 Pretraining Benefits

The value-based error corrector models can finally be pretrained with the additional correction
examples. The pretrained models generate more effective correction candidates for data errors
of the dataset at hand.

Baran can now fix more data errors with the same user labeling budget as more correction
candidates are now available and, at the same time, the corresponding features of the pretrained
models exhibit more evidence for the classifiers. Note that Baran can still avoid irrelevant
correction candidates with the help of the user labels. The user labels let the classifier learn
and prioritize across all available correction candidates.

Example 27 (Pretraining benefits). Pretraining the value-based error corrector models
with the new correction examples extracted in Example 26 makes it possible to fix the last
remaining data error of our toy dataset in Table 5.1, without any further user label.

Considering the data column Name in Table 5.1, the following table contains pairs of data
errors and correction candidates and their corresponding feature vectors. For brevity, we
just demonstrate a few pairs and features. The features are a value-based model with the
identity encoder and the adder operator (mIdentity+Adder) and a domain-based model (mName).
The first two pairs are labeled as the user already validated the tuple 1 of our toy dataset in
Example 19.

Error Correction mIdentity+Adder mName Label
H Hana 1.0* 0.67 1
H Gandom 0.0 0.33 0

Chris Hana 0.0 0.67
Chris Gandom 0.0 0.33

The classifier of the data column Name receives these pairs as data points. It trains with
the first two labeled data points and then predicts the label of the rest of unlabeled data points.
With only these two labeled data points, the classifier has no chance to fix the erroneous
value “Chris” to its actual correction “Christopher”, because it is not among the correction
candidates at all. However, if we pretrain the value-based model mIdentity+Adder with the
previously extracted example of fixing the erroneous value “Chris” to the value “Christopher”
from Wikipedia, we will have the following new pair of a data error and a correction candidate
as a new data point.

Error Correction mIdentity+Adder mName Label
Chris Christopher 1.0* 0.0

The classifier now has enough evidence to fix the erroneous value “Chris” without any
further user label. Since the user already fixed the erroneous value “H” to “Hana”, the
classifier learned that the value-based model mIdentity+Adder (marked with *) is an important
feature. The classifier also observes that the same value-based feature mIdentity+Adder has a
high probability for the pair (“Chris”, “Christopher”), as the model learned this probability in
the pretraining phase. Therefore, the classifier can predict the value “Christopher” as the final
correction of the erroneous value “Chris”. □

6.3 Summary

We proposed new methods to transfer error detection and correction knowledge from previously
cleaned datasets to the current dataset. In particular, we proposed methods to estimate
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6.3 Summary

the effectiveness of error detection strategies on new datasets based on their effectiveness on
similarly dirty datasets. To define similarity between datasets, we designed a dirtiness profile to
represent the dirtiness of a dataset based on automatically extractable features. Furthermore,
we proposed a method to pretrain value-based error corrector models on the huge corpus of
Wikipedia page revision history. To collect additional value-based corrections, we designed
algorithms to segment and align the Wikipedia page revision history. These transfer learning
methods improve the overall performance of the error detection/correction tasks.
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7
Evaluation

We conducted extensive experiments to evaluate our proposed data cleaning approach in terms
of effectiveness, efficiency, and human involvement. We first elaborate our experimental setup.
We then detail our error detection, error correction, and end-to-end data cleaning experiments.
Finally, we summarize the chapter.

7.1 Experimental Setup

We detail our datasets, baselines, evaluation measures, and default settings.

7.1.1 Datasets

We evaluate our systems on 8 well-known datasets from existing literature as described in
Table 7.1. The difficulty level of the error detection/correction task depends on the data
error rate, the diversity of data error types, and the availability of error context signals. We
manually examined the datasets to identify prevalent data error types and useful contextual
information for detecting/correcting the data errors.

1. Hospital. Hospital [74] is a real-world dataset with randomly imposed data errors. We
obtained this dataset along with its ground truth from a previous research project [74].
This dataset has rich contextual information, including a high degree of data redundancy
in the form of duplicate tuples and correlated data columns. However, sampling
informative tuples is particularly challenging on this dataset as the data errors are
scarce and randomly imposed.

2. Flights. Flights [53, 74] is a real-world dataset with real-world data errors. A previous
research project released this dataset and its ground truth [74]. This dataset also has
rich contextual information, including a high degree of data redundancy in the form
of duplicate tuples and correlated data columns. However, the degree of trustworthy
contextual information is low on this dataset due to its high data error rate.

3. Address. Address is a proprietary dataset with ground truth. This dataset is large and
contains various data error types. Its large size, few duplicate tuples, and few correlated
data columns lead to a huge search space for detecting/correcting data errors.
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Table 7.1: Dataset characteristics. The data error types are missing value (MV), typo (T),
formatting issue (FI), and violated attribute dependency (VAD) [72].

Name Size Error Rate Error Types Data Constraints
Hospital 1000× 20 3% T, VAD city → zip, city → county, zip → city, zip → state, zip → county,

county→ state, index (digits), provider number (digits), zip (5 digits),
state (2 letters), phone (digits)

Flights 2376× 7 30% MV, FI, VAD flight → actual departure time, flight → actual arrival time, flight →
scheduled departure time, flight → scheduled arrival time

Address 94306× 12 14% MV, FI, VAD address → state, address → zip, zip → state, state (2 letters),
zip (digits), ssn (digits)

Beers 2410× 11 16% MV, FI, VAD brewery id → brewery name, brewery id → city, brewery id → state,
brewery id (digits), state (2 letters)

Rayyan 1000× 11 9% MV, T, FI, VAD journal abbreviation → journal title, journal abbreviation → journal
issn, journal issn→ journal title, authors list (not null), article pagina-
tion (not null), journal abbreviation (not null), article title (not null),
article language (not null), journal title (not null), journal issn (not
null), article journal issue (not null), article journal volume (not null),
journal created at (date)

IT 2262× 61 20% MV, FI support level (not null), app status (not null), curr status (not
null), tower (not null), end users (not null), account manager (not
null), decomm dt (not null), decomm start (not null), decomm
end (not null), end users (not 0), retirement (predefined list), emp
dta (predefined list), retire plan (predefined list), division (predefined
list), bus import (predefined list)

Movies 7390× 17 6% MV, FI id (“tt” + digits), year (4 digits), rating value (float), rating count (dig-
its), duration (digits + “min”)

Tax 200000× 15 4% T, FI, VAD zip → city, zip → state, first name → gender, area code → state,
gender (predefined list), area code (3 digits), phone (7 formatted
digits), state (2 letters), zip (non-zero-leading digits), material sta-
tus (predefined list), has child (predefined list), salary (digits)

4. Beers. Beers is a real-world dataset that was collected by scraping the web and manual
curation [43]. The lack of data redundancy makes error detection/correction challenging
on this dataset.

5. Rayyan. Rayyan [61] is a real-world dataset that was cleaned by the dataset owner. The
lack of data redundancy makes error detection/correction challenging on this dataset.

6. IT. IT [2] is a real-world dataset that was cleaned by the dataset owner. Prevalent missing
values on this dataset decreases the the degree of trustworthy contextual information for
the error detection/correction task.

7. Movies. Movies is a dataset from the Magellan repository [23]. We used the existing
labels for the duplicate tuples to generate a ground truth for this dataset. Sampling
informative tuples is particularly challenging on this dataset as the data errors are scarce.

8. Tax. Tax is a synthetic dataset from the BART repository [7] with randomly imposed
data errors. This dataset is also large, which makes the error detection/correction search
space huge.

7.1.2 Baselines

We compare our data cleaning systems to 10 recent data cleaning approaches.
1. dBoost. dBoost [67] is an outlier detection tool that contains several algorithms such

as histogram and Gaussian modeling. dBoost also provides the tuple expansion feature
to expand string values into numerical values and find string outliers as well. We
applied grid search to configure dBoost algorithms. In fact, we ran differently configured
versions of dBoost algorithms and evaluated the results on a data sample to report the
best-configured algorithm with the highest effectiveness numbers.
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2. Min-k. Min-k [2] is a simple error detection aggregator that outputs data cells that are
marked by more than k% of the error detection strategies. We ran the approach with
k ∈ {0%, 20%, 40%, 60%, 80%} and report the highest effectiveness numbers. Note that
k = 0% corresponds to the union of all strategies’ outputs.

3. Maximum entropy-based order selection. Maximum entropy-based order selec-
tion [2] is an error detection aggregator that evaluates the error detection strategies on
a data sample. The approach then picks the error detection strategy with the highest
precision first, evaluates its output, and picks the next best strategy.

4. Metadata driven. Metadata driven [86] is an error detection aggregator that combines
the output of manually configured stand-alone error detection tools and metadata in a
feature vector. The approach then trains ensemble classifiers using the feature vectors
and a labeled data sample. We use this aggregator on top of the stand-alone error
detection tools, using the same best-effort configurations.

5. HoloDetect. HoloDetect [41] is a machine learning-based error detection framework that
leverages data augmenting. Given a set of labeled tuples, HoloDetect generates additional
training data to learn the error detection task more effectively. Since HoloDetect’s source
code has not been released yet at the time of writing this thesis, we cannot run it on our
datasets to conduct a holistic comparison. Instead, we compare HoloDetect’s reported
numbers on the shared datasets.

6. KATARA. KATARA [21] is a data cleaning system powered by knowledge bases that
takes a set of entity relationships as input and marks/fixes the violating data errors
accordingly. We ran KATARA with all the entity relationships that are available in the
DBpedia knowledge base [8].

7. NADEEF. NADEEF [22] is a rule-based data cleaning system that takes integrity
rules in the form of denial constraints and marks/fixes the violating data cells. We ran
NADEEF with data constraints that are provided by the dataset owners (Table 7.1).

8. Holistic. Holistic [20] is a rule-based error correction system that uses denial constraints
to fix the violating data errors accordingly. We ran Holistic with all the data constraints
that are provided by the dataset owners (Table 7.1).

9. SCARE. SCARE [93] is an error correction system that partitions the dataset and uses
the clean values to choose corrections of data errors based on their statistical likelihood.
We ran SCARE with random data partitioning. We set its maximum number of value
corrections to the number of detected errors to accommodate all data errors.

10. HoloClean. HoloClean [74] is an error correction system that leverages integrity rules,
matching dependencies, and statistical signals simultaneously to fix data errors holistically.
We ran HoloClean with all the data constraints and matching dependencies that are
provided by the dataset owners (Table 7.1).
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7.1.3 Evaluation Measures

We leverage different evaluation measures to evaluate our systems. We report precision, recall,
and the F1 score to evaluate the effectiveness. Formally,

P = The Number of Correctly Detected/Corrected Data Errors
The Number of All Detected/Corrected Data Errors ,

R = The Number of Correctly Detected/Corrected Data Errors
The Number of All Data Errors ,

F1 = 2 × P × R

P + R
.

(7.1)

We report the runtime in seconds to evaluate the efficiency. We report the number of labeled
tuples to evaluate the human involvement. For each evaluation measure, we report the mean
of 10 independent runs. For the sake of readability, we omit the standard errors as they are
always small numbers close to zero.

7.1.4 Our Default Setting

As the default setting, Raha and Baran incorporate all the error detection strategies and error
corrector models, respectively. They do not leverage any historical data for transfer learning.
Raha uses the Gradient Boosting classifier [33] and Baran uses the AdaBoost classifier [32] as
these advanced ensemble classifiers are less susceptible to overfitting [32]. We set the labeling
budget of the user to θLabels = 20, i.e., 20 labeled tuples per dataset for each system separately.
We assess the sensitivity of our systems to all these choices in our experiments. We run all the
experiments on an Ubuntu 16.04 LTS machine with 28 2.60 GHz cores and 264 GB memory.

7.2 Error Detection Experiments

Our error detection experiments aim to answer the following questions on Raha.
1. How does Raha compare to existing error detection approaches? (Section 7.2.1)

2. How does each group of error detection strategies affect Raha’s effectiveness? (Sec-
tion 7.2.2)

3. How does the tuple sampling approach affect Raha’s convergence? (Section 7.2.3)

4. How do user labeling errors affect Raha’s effectiveness? (Section 7.2.4)

5. How does the performance of Raha scale in the number of data rows and columns?
(Section 7.2.5)

6. How does the choice of the classifier affect Raha’s effectiveness? (Section 7.2.6)

7. How does our method in estimating the effectiveness of error detection strategies affect
Raha’s performance? (Section 7.2.7)

7.2.1 Raha Versus the Baselines

We compare Raha to stand-alone and aggregator error detection approaches separately.
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Table 7.2: Raha’s effectiveness in comparison to the stand-alone error detection approaches.

Approach Hospital Flights Address Beers
P R F P R F P R F P R F

dBoost 0.54 0.45 0.49 0.78 0.57 0.66 0.23 0.50 0.31 0.54 0.56 0.55
NADEEF 0.05 0.37 0.09 0.30 0.06 0.09 0.51 0.73 0.60 0.13 0.06 0.08
KATARA 0.06 0.37 0.10 0.07 0.09 0.08 0.25 0.99 0.39 0.08 0.26 0.12

Raha 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99

Approach Rayyan Movies IT
P R F P R F P R F

dBoost 0.12 0.26 0.16 0.18 0.72 0.29 0.00 0.00 0.00
NADEEF 0.74 0.55 0.63 0.13 0.43 0.20 0.99 0.78 0.87
KATARA 0.02 0.10 0.03 0.01 0.17 0.02 0.11 0.17 0.14

Raha 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99

7.2.1.1 Stand-Alone Approaches

Table 7.2 shows the effectiveness of Raha in comparison to three stand-alone error detection
systems. Raha outperforms all these systems on all the datasets in terms of F1 score. The
superiority of Raha is due to its novel task formulation that featurizes each data cell with
a large number of signals to learn data errors. Raha achieves this effectiveness with only a
limited number of labeled tuples, i.e., θLabels = 20 tuples per dataset for the reported numbers.

The other baselines fail to achieve high effectiveness with low human involvement due to
their design. They are usually bounded to only one type of data errors and are not expressive
enough to accurately differentiate clean and dirty values. dBoost yields low recall because it
marks only statistical outliers as data errors. It also achieves low precision because its applied
heuristics leads to outlying legitimate values as data errors. This system also needs the user
to tune statistical parameters. NADEEF yields low recall because it marks only rule violation
data errors. It also achieves low precision because it reports data errors in the coarse granular
violation form, which consists of multiple data cells. This system also needs the user to provide
the correct and complete set of integrity rules. KATARA yields low recall because it marks
only data values that do not conform to the entity relationships inside the knowledge base. It
achieves low precision because the ambiguity of concepts leads to a mismatch between the
dataset at hand and the external knowledge base. This system also needs the user to provide
related knowledge bases.

Figure 7.1 shows the effectiveness of Raha in comparison to HoloDetect. Raha achieves a
competitive F1 score while involving the user much less than HoloDetect for two reasons. First,
Raha does not take any user-provided rules or parameters to achieve this performance. Second,
Raha requires the user to only mark data errors during the user labeling process. Contrary,
HoloDetect requires the user to both mark and fix data errors in the sampled tuples to train
error generator models. Note that since HoloDetect’s source code has not been released yet,
we cannot run it on our datasets. Hence, we instead ran Raha on HoloDetect’s datasets to
compare our performance numbers to HoloDetect’s reported numbers. The superiority of
HoloDetect on the Hospital dataset is due to the fact that data errors of this dataset are
systematically injected typos. Thus, the data augmentation technique of HoloDetect can
easily learn the error generation model and detect the rest of the data errors. However, Raha
eventually outperforms HoloDetect on the Hospital dataset with a few labeled tuples.

7.2.1.2 Aggregator Approaches

Figure 7.2 shows the effectiveness of Raha in comparison to three error detection aggregators.
Raha outperforms all the error detection aggregators on all the datasets in terms of F1 score
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Figure 7.1: Raha’s effectiveness in comparison to HoloDetect.

and user labels. Raha converges faster requiring fewer labeled tuples due to its expressive
feature representation and effective tuple sampling method.

While the baseline aggregator approaches internally combine multiple error detection
strategies, they fail to achieve high F1 score due to the simplicity of their aggregation
methods. They leverage simple heuristics as aggregation functions that work only based
on the strong assumption of having accurate base error detection strategies. Therefore, their
simple aggregation functions fail to achieve high precision when the base error detection
strategies are not accurate.

The min-k approach, which simply marks as data errors the majority voted data cells,
yields a low precision due to the inaccuracy of the base error detection strategies. Although
this approach does not need user labels, it needs the user to configure the base error detection
strategies and to set the parameter k.

The maximum entropy-based approach tries to address these shortcomings by aggregating
the base error detection strategies based on their sample precision. However, its aggregation
function is too simplistic to be able to learn complex data errors. Furthermore, this approach
needs the user to configure the base error detection strategies and to manually evaluate the
precision of each base strategy on a data sample.

The metadata-driven approach incorporates a learning component that learns to combine
multiple base error detection strategies. However, it cannot achieve Raha’s precision and recall
due to its feature representation and tuple sampling methods. The metadata-driven approach
leverages a small set of features, including the output of three base error detection strategies
(i.e., dBoost, NADEEF, and KATARA) and metadata. This feature representation is not
expressive enough to catch complex data errors. Furthermore, it randomly samples tuples
for labeling, which is not an effective method due to the class imbalance ratio between clean
and dirty data cells in datasets. This approach also needs the user to configure the base error
detection strategies and to label a data sample.

7.2.2 Error Detection Strategy Impact Analysis

We conducted an ablation experiment to analyze the impact of different groups of error
detection strategies on the effectiveness of Raha. We run Raha with all the error detection
strategies (row All in Table 7.3). Then, we exclude each feature group, one at a time, to
analyze its impact. For example, All - OD means Raha leverages all the error detection
strategies as features but the outlier detection ones. Here, we also report the effectiveness of
Raha when it uses TFIDF features, which is the featurization method of ActiveClean [51].

As shown in Table 7.3, Raha is robust against removing feature groups as its effectiveness
does not collapse when a group of error detection strategies is excluded. However, depending on
the data error rate and prevalent data error types, removing a feature group could reduce the
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Figure 7.2: Raha’s effectiveness in comparison to the error detection aggregators.

effectiveness more significantly. For example on the Hospital dataset, where data columns are
highly correlated, removing the rule violation detection strategies decreases the effectiveness
more severely as functional dependencies are very important signals to detect data errors on
this dataset. On the Movies dataset, where the data error rate is low and thus the data errors
are mainly outliers, removing the outlier detection strategies decreases the effectiveness more
severely.

Interestingly, the TFIDF featurization of ActiveClean leads to high F1 scores using Raha’s
sampling method. However, the overall effectiveness with TFIDF features is always worse
than the full feature set of Raha.

7.2.3 Tuple Sampling Impact Analysis

We analyze the impact of our tuple sampling method on the effectiveness of Raha. In particular,
we compare two versions of Raha with two different sampling methods. Uniform sampling
method selects tuples for user labeling according to a uniform probability distribution. On the
other hand, our proposed clustering-based sampling method first selects tuples based on the
existing clusters of data cells and then propagates the user labels through the clusters.

As shown in Figure 7.3, our clustering-based sampling method speeds up the convergence
of Raha. This higher convergence speed is more obvious on datasets with lower data error
rates, such as Hospital and Movies, where finding enough dirty data cells to sufficiently train
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Table 7.3: Raha’s effectiveness with different groups of error detection strategies as features: outlier
detection (OD), pattern violation detection (PVD), rule violation detection (RVD), knowledge
base violation detection (KBVD), and all together (All).

Feature Group Hospital Flights Address Beers
P R F P R F P R F P R F

TFIDF 0.98 0.10 0.18 0.63 0.88 0.73 0.84 0.57 0.68 0.73 0.80 0.76

All - OD 0.93 0.53 0.68 0.80 0.85 0.82 0.89 0.84 0.86 0.95 0.95 0.95
All - PVD 0.95 0.62 0.75 0.83 0.84 0.83 0.87 0.89 0.88 0.92 0.94 0.93
All - RVD 0.75 0.37 0.50 0.80 0.78 0.79 0.86 0.87 0.86 0.97 0.98 0.97
All - KBVD 0.95 0.60 0.74 0.85 0.78 0.81 0.85 0.76 0.80 0.98 0.98 0.98

All 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99

Feature Group Rayyan Movies IT
P R F P R F P R F

TFIDF 0.91 0.58 0.70 0.19 0.04 0.07 0.92 0.97 0.95

All - OD 0.78 0.72 0.75 0.66 0.82 0.73 0.99 0.98 0.98
All - PVD 0.74 0.74 0.74 0.77 0.84 0.80 0.98 0.97 0.97
All - RVD 0.82 0.78 0.80 0.92 0.90 0.91 0.99 0.98 0.98
All - KBVD 0.83 0.76 0.79 0.80 0.88 0.84 0.99 0.97 0.98

All 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99

the classifiers is harder due to the class imbalance ratio of clean and dirty data cells. Our
clustering-based sampling method addresses this issue by generating additional noisy labels.

7.2.4 User Labeling Error Impact Analysis

We analyze the impact of user labeling errors on the effectiveness of Raha as the input user
labels could be erroneous themselves. In particular, we compare the homogeneity- and majority-
based conflict resolution functions for label propagation in the presence of user labeling errors.
The erroneous user labels are randomly distributed across data cells of the sampled tuples.

As shown in Figure 7.4, Raha’s effectiveness drops slightly with increased user labeling
errors. The decline is more severe on the Hospital dataset because this dataset contains many
similar data errors due to duplicate tuples. Having wrong user labels for such similar data
errors confuses the classifiers.

The majority-based conflict resolution function fares better than its homogeneity-based
counterpart in the presence of user labeling errors because the latter does not propagate any
user label if user labels are contradictory. The majority-based conflict resolution function
is more robust in these situations as it propagates user labels in any clusters where a label
class has the majority. Under the assumption of perfect user labels, both conflict resolution
functions perform nearly equal.

7.2.5 System Scalability

We analyze the scalability of Raha with respect to the number of data rows and columns. We
leverage our large Tax and IT datasets to measure the effectiveness and efficiency of Raha
when the number of data rows and data column increases.

As shown in Figure 7.5, Raha’s runtime increases linearly and its F1 score stays the same
when the number of data rows and data columns increases.
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Figure 7.3: Raha’s effectiveness with different tuple sampling methods.

7.2.6 Classifier Impact Analysis

We analyze the impact of the classifier on the effectiveness of Raha. In particular, we tested
AdaBoost, Decision Tree, Gradient Boosting, Gaussian Naive Bayes, Stochastic Gradient
Descent, and Support Vectors Machines, all implemented in scikit-learn Python module [65].
The hyperparameter tuning task can slightly improve the effectiveness of these classifiers.
However, as we aim at building a general-purpose system and fine-tuning Raha for each dataset
is not our goal, we skip the straightforward hyperparameter tuning task and simply run each
classifier with its recommended hyperparameters.

As shown in Table 7.4, the choice of the classifier does not affect the effectiveness of Raha
significantly because the main impact of the system comes from the feature representation
and the tuple sampling method. In our current prototype, we deploy the Gradient Boosting
classifier because it is an advanced ensemble learning model that internally combines multiple
simpler base classifiers [33].

7.2.7 Estimating the Effectiveness of Strategies Impact Analysis

We analyze the effect of estimating the effectiveness of error detection strategies on the
performance of Raha. We simulated a scenario where we have several cleaned datasets in our
repository with a new dirty dataset arriving. For each run, we consider one of the datasets
as the new dirty dataset dnew and the rest of the datasets as the set of historical datasets D,
according to the well-known leave-one-out methodology [75].
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Figure 7.4: Raha’s effectiveness in the presence of user labeling errors with the (a) homogeneity-
based and (b) majority-based conflict resolution functions.
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Figure 7.5: Raha’s scalability with respect to the number of (a) data rows and (b) data columns.
The number on each point depicts the achieved F1 score.

We evaluate both of our algorithms in estimating the effectiveness of strategies: with full
dirtiness profiles and with column profiles. We first show how accurately we can estimate the
effectiveness of error detection strategies with full dirtiness profiles, when all metadata features
are available. We then show how Raha can filter out ineffective error detection strategies with
column profiles, when the quality features of the dirtiness profile are not available.

7.2.7.1 Estimation Accuracy with Full Dirtiness Profiles

As mentioned in Section 6.1, the effectiveness of existing error detection aggregators depends
on the effectiveness of their base error detection strategies. Therefore, we can improve their
overall effectiveness by estimating the effectiveness of the base error detection strategies and
selecting only the most promising strategies.

We analyze the accuracy of estimated effectiveness of error detection strategies with the
assumption of having the full dirtiness profiles, including the raw output of all error detection
strategies. Thus, we estimate the F1 score of the error detection strategies on the new dataset
with our regression-based method. We use mean squared error (MSE) to measure the quality
of the estimated effectiveness as

MSE = 1
|S|

∑
s∈S

(
F (s, dnew) − F̂ (s, dnew)

)2
, (7.2)
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Table 7.4: Raha’s effectiveness with different classifiers.

Classifier Hospital Flights Address Beers
P R F P R F P R F P R F

AdaBoost 0.96 0.56 0.70 0.83 0.79 0.81 0.92 0.82 0.87 0.99 1.00 1.00
Decision Tree 0.95 0.57 0.71 0.82 0.79 0.80 0.90 0.81 0.85 1.00 0.99 0.99
Gradient Boosting 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99
Gaussian Naive Bayes 0.99 0.45 0.61 0.88 0.69 0.77 0.84 0.84 0.84 1.00 0.97 0.98
Stochastic Gradient Descent 0.89 0.52 0.65 0.84 0.76 0.80 0.83 0.73 0.78 0.99 0.98 0.98
Support Vectors Machines 0.98 0.39 0.56 0.83 0.77 0.80 0.66 0.36 0.47 0.99 0.96 0.98

Classifier Rayyan Movies IT
P R F P R F P R F

AdaBoost 0.80 0.78 0.78 0.81 0.87 0.84 0.98 0.98 0.98
Decision Tree 0.79 0.75 0.77 0.82 0.87 0.84 0.98 0.98 0.98
Gradient Boosting 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99
Gaussian Naive Bayes 0.79 0.62 0.69 0.53 0.88 0.66 0.99 0.98 0.98
Stochastic Gradient Descent 0.82 0.78 0.80 0.80 0.85 0.82 0.99 0.97 0.98
Support Vectors Machines 0.82 0.79 0.80 0.74 0.85 0.79 0.97 0.98 0.98

where F (s, dnew) is the actual and F̂ (s, dnew) is the estimated F1 score of the error detection
strategy s on the new dataset dnew.

We compare three approaches in estimating the effectiveness of error detection strategies.
1. Maximum entropy-based estimator. The baseline maximum entropy-based estima-

tor [2] asks the user to evaluate error detection strategies on a data sample and then
estimates the F1 score of each strategy by its sample precision.

2. Unsupervised estimator. Our unsupervised estimator leverage all the dirtiness profile
features except the optional sample precision of error detection strategies to estimate
the effectiveness of strategies.

3. Semi-supervised estimator. Our semi-supervised estimator leverage all the dirtiness
profile features. By default, the semi-supervised estimator leverages sample precision
features evaluated on 1% of the dataset and the Gradient Boosting regression model [33].

Figure 7.6(a) illustrates the mean squared error of the three approaches in estimating the
effectiveness of error detection strategies. Our semi-supervised and unsupervised estimators
always outperform the baseline approach. The results particularly show that the unsupervised
dirtiness profile works sufficiently effective.

Figure 7.6(b) illustrates the mean squared error of the semi-supervised estimator when
it leverages different subsets of feature groups as the dirtiness profile. All the feature groups
are informative for the task as the semi-supervised estimator estimates most accurately by
incorporating all of the content, structure, and quality features (CF+SF+QF). The most
informative feature group is data quality features (QF) because it practically captures the
error distributions across datasets.

Figure 7.6(c) illustrates the mean squared error of the semi-supervised estimator when
it uses different regression models. In particular, we tested Linear Regression (LR), Ridge
Regression (RR), Decision Tree Regression (DTR), and Gradient Boosting Regression (GBR),
all implemented in scikit-learn Python module [65]. The choice of the regression model does
not significantly affect the overall effectiveness of the semi-supervised estimator as the major
effectiveness impact is gained due to the dirtiness profile.

Figure 7.6(d) illustrates the mean squared error of the semi-supervised estimator while
increasing the number of training dirtiness profiles in the repository. We start to train the
regression models with just one dirtiness profile. As the number of training dirtiness profiles
increases, the mean squared error decreases as well, because it becomes more likely to find
a similar dirtiness profile in the repository. When having around 7 dirtiness profiles as the
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Figure 7.6: Mean squared error of estimating the effectiveness of error detection strategies with
different (a) approaches and sampling rates, (b) feature groups, (c) regression models, and (d)
repository sizes.

training set, its effectiveness almost converges. This is promising as the effectiveness does not
require unrealistically large repositories.

7.2.7.2 Strategy Filtering with Column Profiles

As mentioned in Section 6.1, Raha’s runtime depends on the number of base error detection
strategies that Raha has to run on the dataset. Thus, we can improve Raha’s overall efficiency
by estimating the effectiveness of the base error detection strategies upfront and filtering
out the ineffective strategies. Since we want to estimate the effectiveness of error detection
strategies upfront, we cannot run them on the dataset. Therefore, the quality features of the
dirtiness profiles are not available and we need to filter out ineffective error detection strategies
with the column profiles and the strategy filtering algorithm introduced in Section 6.1.

We analyze the effect of filtering out irrelevant error detection strategies on the performance
of Raha with the assumption of having column profiles, which do not cover the raw output of
error detection strategies. In fact, we leverage our strategy filtering algorithm to select the
promising error detection strategies upfront and pass these promising strategies to Raha. We
report the performance of Raha with and without this strategy filtering step to analyze the
effect of limited computational resources for feature extraction.

Figure 7.7(a) shows the runtime of Raha with and without strategy filtering via historical
data. The runtime is significantly improved by more than an order of magnitude as Raha
needs to run only a fraction of all possible error detection strategies. Note that we exclude the
user labeling time as it is user dependent and irrelevant to the machine runtime.

Figure 7.7(b) shows the F1 score of five different strategy filtering methods. We leverage
the ground truth of datasets to evaluate the F1 score of all the error detection strategies to
sort them accordingly. Thus, the first and second methods are Raha with the least and most
effective strategies as features. These two extreme methods could be a lower and an upper
bound for the effectiveness of any other strategy filtering method. The third method is Raha
with a uniform strategy filtering that uniformly picks error detection strategies as the features.
Since this method is probabilistic, we repeat it 5 times and report the mean and standard
deviation. The fourth and fifth methods are Raha with our strategy filtering via historical
data and Raha without any strategy filtering, respectively. Note that the mentioned number
of selected strategies is the same for all the strategy filtering methods and is computed by our
strategy filtering method.

As shown in Figure 7.7(b), our strategy filtering method via historical data outperforms the
least effective strategy selection and the uniform strategy selection methods. The effectiveness
of Raha with strategy filtering via historical data is slightly lower than the most effective
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Figure 7.7: Raha’s (a) efficiency with/without strategy filtering via historical data and (b)
effectiveness with different strategy filtering methods. The numbers of selected strategies are
denoted inside the brackets.

strategy selection method. However, our strategy filtering via historical data method can
achieve almost the same F1 score without running or evaluating any strategy on the new
dataset. The effectiveness of Raha with no strategy filtering is higher than the most effective
strategy selection method. This shows that even ineffective error detection strategies still can
add some information to the feature vector.

7.3 Error Correction Experiments

Our error correction experiments aim to answer the following questions on Baran.
1. How does Baran compare to the existing error correction approaches? (Section 7.3.1)

2. How do the error corrector models affect Baran’s effectiveness? (Section 7.3.2)

3. How does the tuple sampling approach affect Baran’s convergence? (Section 7.3.3)

4. How does the choice of the classifier affect Baran’s effectiveness? (Section 7.3.4)

5. How does our method in pretraining the error corrector models affect Baran’s
effectiveness? (Section 7.3.5)

7.3.1 Baran Versus the Baselines

We compare the performance of Baran with the baselines in terms of effectiveness, efficiency,
and human involvement. All the error correction approaches in this section take as input the
same correct and complete set of data errors.

7.3.1.1 Effectiveness

Table 7.5 shows the effectiveness of the error correction approaches. Baran outperforms all
the baselines in terms of the F1 score on all the datasets as our two-step formulation of the
error correction task achieves both high precision and recall. In fact, since Baran trains a
comprehensive set of error corrector models based on the different contexts of data errors,
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Table 7.5: Baran’s effectiveness in comparison to the baselines.

Approach Hospital Flights Address Beers
P R F P R F P R F P R F

KATARA 0.98 0.24 0.39 0.00 0.00 0.00 0.79 0.01 0.02 0.00 0.00 0.00
SCARE 0.67 0.53 0.59 0.57 0.06 0.11 0.10 0.10 0.10 0.16 0.07 0.10
Holistic 0.52 0.38 0.44 0.21 0.01 0.02 0.41 0.31 0.35 0.49 0.01 0.02
HoloClean 1.00 0.71 0.83 0.89 0.67 0.76 0.01 0.01 0.01 0.01 0.01 0.01

Baran 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90

Approach Rayyan IT Tax
P R F P R F P R F

KATARA 0.00 0.00 0.00 0.04 0.01 0.02 0.59 0.01 0.02
SCARE 0.00 0.00 0.00 0.20 0.10 0.13 0.01 0.01 0.01
Holistic 0.85 0.07 0.13 1.00 0.78 0.88 0.96 0.26 0.41
HoloClean 0.00 0.00 0.00 0.01 0.01 0.01 0.11 0.11 0.11

Baran 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

these models propose a large set of potential corrections that increases the achievable recall
bound significantly. Later, when Baran leverages a few user labels to ensemble these correction
candidates into the final set of corrections, the high error correction precision is also maintained.

The effectiveness of Baran depends on the amount of value-based, vicinity-based, and
domain-based context information that each dataset provides. On context-rich datasets, such
as Hospital and Flights, with many duplicate rows and correlated data columns, Baran can
train and ensemble effective error corrector models leveraging all the three data error contexts.
Therefore, Baran achieves high F1 scores on these datasets. In particular, Baran achieves
perfect F1 score on the Flights dataset, which has a high degree of redundancy. On the
other hand, on datasets with less data error context information, such as Address, where the
erroneous values are often missing values, Baran cannot fix all the data errors accurately.

Other error correction approaches cannot achieve Baran’s F1 score because they cannot
achieve both high precision and recall. KATARA has poor precision because the ambiguity of
concepts leads to a mismatch between the dataset and the knowledge base. KATARA also has
poor recall because most parts of datasets cannot be matched to knowledge bases. Holistic has
poor precision and recall because the provided integrity rules can only fix a portion of data
errors accurately. Although HoloClean has relatively high precision and recall on datasets
with a high degree of redundancy, such as Hospital and Flights, it cannot show the same
effectiveness on the rest of datasets. On datasets with lower degrees of redundancy or fewer
predefined data constraints, HoloClean cannot find the correction of data errors accurately
because the actual correction either does not exist anywhere in data or is not covered by data
constraints. Similarly, SCARE cannot achieve high precision and recall on datasets with low
degrees of data redundancy.

As long as a dataset provides rich contextual information, the data error rate does not
affect the effectiveness of Baran significantly. For example, Baran is highly effective on both
context-rich datasets Hospital and Flights although the former has a low (3%) and latter has
a high (30%) data error rate. To further analyze the effect of the data error rate, we select
our most erroneous dataset Flights and generate four without-replacement samples of it with
10%, 30%, 50%, and 70% erroneous data cells. Figure 7.8 shows the F1 score of the error
correction approaches on these four datasets. As the data error rate increases, the F1 score of
all the approaches naturally drops because trustworthy evidence diminishes. However, Baran
consistently outperforms all the other approaches because it leverages the remaining scarce
trustworthy contexts of data errors more effectively.
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Figure 7.8: Baran’s effectiveness on the Flights dataset when the data error rate increases.

Table 7.6: Baran’s runtime (in seconds) in comparison to the baselines.

Approach Hospital Flights Address Beers Rayyan IT Tax
KATARA 234 116 5739 180 134 2031 15992
SCARE 76 123 11853 363 216 8717 55495
Holistic 15 10 69 9 8 3 247
HoloClean 148 39 17582 96 112 885 25778

Baran 23 22 11073 114 26 247 11936

7.3.1.2 Human Involvement

Figure 7.9 shows the effectiveness of the error correction approaches with respect to the number
of labeled tuples. The F1 score of Baran quickly converges with only a few labeled tuples
and outperforms the F1 score of all the other approaches. This fast convergence is due to
the Baran’s tuple sampling and feature generation methods that generate a large number of
informative training data points with a few user labels.

Since KATARA, SCARE, Holistic, and HoloClean do not leverage user labels, their F1 score
is independent of the number of labeled tuples. However, we argue that they leverage human
supervision in other more tedious forms. KATARA needs the user to provide related knowledge
bases. SCARE needs the user to tune statistical parameters. Holistic and HoloClean need the
user to provide the correct and complete set of integrity rules and matching dependencies. In
contrast, Baran does not need any user-provided rules or parameters and quickly converges
with only a few user labels.

7.3.1.3 Efficiency

Table 7.6 shows the runtime of the error correction approaches in seconds. Although efficiency
is not the main concern of Baran, it displays a competitive runtime in comparison to the other
baselines. The reported runtime captures the online phase of Baran as the offline pretraining
phase is totally independent of the input dataset. Furthermore, we exclude the user labeling
time for Baran as it is user dependent and irrelevant to the machine runtime.

Optimizing machine runtime efficiency has not been the main goal of data cleaning systems
as optimizing effectiveness and human involvement are more important objectives [2, 74].
However, it is important to develop systems that can work in a reasonable runtime.

7.3.2 Error Corrector Model Impact Analysis

We conducted an ablation experiment on the error corrector models to better understand
their effect on the overall effectiveness of Baran. First, we run Baran with all the default
error corrector models (row All in Table 7.7). Then, similar to the study in Section 7.3, we
exclude each type of models, one at a time, to analyze its impact. For example, All - VaM
means that Baran leverages all the error corrector models but the value-based ones. Finally,
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Figure 7.9: Baran’s effectiveness with different numbers of labeled tuples.

we also evaluate the effectiveness of Baran with all the default models together with custom
dataset-specific models (row All + CM ) obtained from the data constraints in Table 7.1.
Baran leverages these data constraints as hard-coded error corrector models that overwrite
our default models, if necessary.

As shown in Table 7.7, Baran has the highest F1 score with all the default error corrector
models on most of the datasets. By collecting the proposed potential corrections from all the
error corrector models, Baran has more context information to fix data errors.

However, excluding one type of error corrector models can improve the F1 score on some
datasets. Excluding vicinity-based or domain-based models improves the F1 score on the Tax
dataset. On this large dataset with thousands of data rows, these models propose thousands of
clean values from the active domain of the data error as potential corrections. Learning to find
the actual correction among this huge search space needs more learning iterations and user
labels. Excluding value-based models improves the F1 score on the Hospital dataset. Since
this dataset has randomly imposed typos, the value-based models cannot effectively learn
value-based corrections from this randomness.

We can also observe the importance of vicinity-based models in fixing inter-column
dependency violations. Excluding the vicinity-based error corrector models significantly
drops the F1 score on datasets with high inter-column dependencies, such as Hospital and
Flights. This decline shows that Baran effectively fixes inter-column dependency violations
with including vicinity-based models.
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Table 7.7: Baran’s effectiveness with different error corrector models: value-based models (VaM),
vicinity-based models (ViM), domain-based models (DoM), all default models (All), and custom
dataset-specific models (CM).

Error Corrector Hospital Flights Address Beers
Models P R F P R F P R F P R F
All - VaM 0.95 0.88 0.91 1.00 1.00 1.00 0.61 0.06 0.11 0.67 0.42 0.52
All - ViM 0.64 0.31 0.42 0.08 0.06 0.07 0.40 0.25 0.31 0.87 0.86 0.86
All - DoM 0.88 0.87 0.87 1.00 1.00 1.00 0.56 0.25 0.35 0.91 0.88 0.89

All 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90

All + CM 0.90 0.89 0.89 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90

Error Corrector Rayyan IT Tax
Models P R F P R F P R F
All - VaM 0.19 0.07 0.10 0.98 0.95 0.96 0.44 0.24 0.31
All - ViM 0.48 0.34 0.40 0.98 0.98 0.98 0.88 0.88 0.88
All - DoM 0.54 0.35 0.42 0.98 0.98 0.98 0.90 0.81 0.85

All 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

All + CM 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

Adding custom dataset-specific models to the default set of error corrector models does
not affect the F1 score on most of the datasets as our default models are general enough and
already cover these prevalent data constraints. For example, one-attribute to one-attribute
functional dependencies are already incorporated into Baran due to the vicinity-based models.

7.3.3 Tuple Sampling Impact Analysis

We analyze the impact of our tuple sampling method on the effectiveness of Baran. In particular,
we compare two versions of our system with two different sampling methods. the Uniform
sampling method selects erroneous tuples for user labeling according to a uniform probability
distribution. Our tuple sampling method selects tuples according to their informativeness for
the classifiers as described in Section 5.2.

As shown in Figure 7.10, our tuple sampling method speeds up the convergence of Baran.
The superiority of our tuple sampling method is more obvious on datasets with more randomly
dispersed data errors, such as Hospital and Rayyan. On these datasets, the classifiers need
to have enough informative labeled data errors from each data column and data error type
to be able to fix all the data errors accurately. That is why our tuple sampling method that
oversamples the underlabeled data columns and data error types converges faster.

7.3.4 Classifier Impact Analysis

We analyze the impact of the classifier on the effectiveness of Baran. In particular, we tested
AdaBoost, Decision Tree, Gradient Boosting, and Stochastic Gradient Descent, all implemented
in scikit-learn Python module [65]. The hyperparameter tuning task can slightly improve the
effectiveness of these classifiers. However, as we aim at building a general-purpose system and
fine-tuning Baran for each dataset is not our goal, we skip the straightforward hyperparameter
tuning task and simply run each classifier with its recommended hyperparameters.

Table 7.8 shows that the choice of the classifier does not have a significant impact on the
effectiveness of Baran. Although on some datasets, such as Address, the F1 score varies more,
there are always multiple classifiers that achieve almost the same F1 score. In our current
prototype, we deploy AdaBoost because it is an advanced ensemble classifier [32], which is less
susceptible to overfitting [76].
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Figure 7.10: Baran’s effectiveness with different tuple sampling methods.

7.3.5 Pretraining Models Impact Analysis

We analyze the impact of pretraining the error corrector models on the effectiveness of Baran.
We pretrained the value-based models on the revision history of more than 300000 Wikipedia
pages (row Baran with Pretraining in Table 7.9).

As shown in Table 7.9, pretraining the value-based models improves the F1 score more
significantly on datasets with prevalent syntactic data issues, such as Hospital and Rayyan.
Pretraining provides more evidence for the classifiers to predict the actual correction. In
particular, the pretrained value-based models generate additional correction candidates that
enable Baran to converge to its reported F1 score with fewer than 20 labeled tuples for the
same F1 score. On the Hospital dataset, pertaining generates 455390 new correction candidates.
As a result, we just need 13 labeled tuples to achieve the same F1 score achieved with 20
labeled tuples. On the Rayyan dataset, pertaining generates 77569 new correction candidates.
With pretraining, we reach the same F1 score that previously needed 20 labeled tuples with
only 18 labeled tuples. On the Tax dataset, pretraining generates 7134254 new correction
candidates. As a result, we just need 19 labeled tuples to achieve the same F1 score achieved
with 20 labeled tuples.

Contrary, the effectiveness improvement is minor on datasets like IT, where most of the
erroneous values are missing values. Here, the value-based models cannot propose potential
corrections effectively, regardless of being pretrained or not.
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Table 7.8: Baran’s effectiveness with different classifiers.

Classifier Hospital Flights Address Beers
P R F P R F P R F P R F

AdaBoost 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90
Decision Tree 0.88 0.85 0.86 1.00 1.00 1.00 0.70 0.34 0.46 0.91 0.89 0.90
Gradient Boosting 0.94 0.68 0.79 1.00 1.00 1.00 0.63 0.12 0.20 0.92 0.81 0.86
Stochastic Gradient Descent 0.95 0.92 0.93 1.00 1.00 1.00 0.66 0.25 0.36 0.95 0.87 0.91

Classifier Rayyan IT Tax
P R F P R F P R F

AdaBoost 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81
Decision Tree 0.62 0.34 0.44 0.98 0.98 0.98 0.74 0.73 0.73
Gradient Boosting 0.66 0.41 0.51 0.99 0.98 0.98 0.97 0.59 0.73
Stochastic Gradient Descent 0.59 0.21 0.31 0.99 0.98 0.98 0.83 0.63 0.72

Table 7.9: Baran’s effectiveness with and without pretraining the error corrector models.

Approach Hospital Flights Address Beers
P R F P R F P R F P R F

Baran 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90
Baran with Pretraining 0.94 0.88 0.91 1.00 1.00 1.00 0.67 0.32 0.43 0.94 0.87 0.90

Approach Rayyan IT Tax
P R F P R F P R F

Baran 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81
Baran with Pretraining 0.80 0.44 0.57 0.98 0.98 0.98 0.95 0.73 0.83

7.4 End-to-End Data Cleaning Experiments

Our end-to-end data cleaning experiments aim to answer the following question on Raha and
Baran: How does an end-to-end data cleaning pipeline with Raha and Baran compare to other
alternative end-to-end pipelines?

Although error detection and error correction have been considered as two orthogonal
tasks in literature [2, 41, 74, 93], it is important to also analyze the end-to-end data cleaning
effectiveness. Naturally, the effectiveness of the downstream error correction task depends on
the effectiveness of the upstream error detection task. Typically, the error detection recall is
the upper bound of the error correction recall as we might only fix a subset of data errors that
are already detected [74].

We compare the effectiveness of three end-to-end data cleaning scenarios.
1. Perfect error detection + Baran. The user perfectly detects all the data errors of

the dataset and then Baran corrects them (row Perfect ED + Baran in Table 7.10).

2. Raha + perfect error correction. Raha detects data errors of the dataset and
then the user corrects all the detected data errors perfectly (row Raha + Perfect EC ).
The effectiveness of this virtual error correction approach is the upper bound of error
correction systems.

3. Raha + an error correction system. Raha detects data errors and then an
error correction system corrects the detected data errors. In particular, we study
the effectiveness of three end-to-end data cleaning pipelines. All the error correction
systems in the following end-to-end pipelines take the same set of detected data errors.
(a) Raha + HoloClean. Raha detects data errors and then HoloClean corrects these

detected data errors (row Raha + HoloClean).
(b) Raha + Baran. Raha detects data errors and then Baran corrects these detected

data errors (row Raha + Baran). Here, Raha and Baran work orthogonal and each
of them separately asks the user to label 20 tuples per dataset.
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Table 7.10: The end-to-end data cleaning effectiveness with imperfect and perfect error detection
(ED) and error correction (EC).

Approach Hospital Flights Address Beers
P R F P R F P R F P R F

Perfect ED + Baran 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90

Raha + Perfect EC 0.98 0.58 0.73 0.97 0.75 0.85 0.83 0.85 0.84 0.98 1.00 0.99

Raha + HoloClean 0.19 0.41 0.26 0.08 0.16 0.11 0.01 0.01 0.01 0.01 0.01 0.01
Raha + Baran 0.89 0.52 0.66 0.88 0.53 0.66 0.57 0.32 0.41 0.93 0.87 0.90
Raha + Baran (In) 0.95 0.52 0.67 0.84 0.56 0.67 0.53 0.32 0.40 0.93 0.87 0.90

Approach Rayyan IT Tax
P R F P R F P R F

Perfect ED + Baran 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

Raha + Perfect EC 0.83 0.79 0.81 0.99 0.98 0.98 0.97 0.98 0.97

Raha + HoloClean 0.00 0.00 0.00 0.01 0.01 0.01 0.11 0.11 0.11
Raha + Baran 0.50 0.27 0.35 0.98 0.96 0.97 0.84 0.66 0.74
Raha + Baran (In) 0.44 0.21 0.28 0.99 0.97 0.98 0.84 0.77 0.80

(c) Raha + Baran (integrated). Raha detects data errors by asking the user to
label 20 tuples per dataset and then it passes these user labels along with the
detected data errors to Baran (row Raha + Baran (In)). Therefore, Baran does not
take any other labels from the user in this integrated end-to-end pipeline and just
reuses Raha’s user labels.

Table 7.10 shows the effectiveness of these end-to-end data cleaning pipelines. Imperfect
error detection/correction naturally leads to a slight drop of end-to-end data cleaning
effectiveness. In particular, imperfect error detection leads to a slight drop of the Baran’s error
correction effectiveness. This decline is minor on most of the datasets, such as Beers and IT,
as Baran still achieves a very close F1 score to the perfect error correction.

Both end-to-end data cleaning pipelines with Raha and Baran achieve almost the same
F1 score and both clearly outperform the pipeline with HoloClean. The semi-supervised
learning nature of Baran enables us to learn corrections with respect to all data error contexts
and user labels, even if the set of detected data errors is not correct and complete in the first
place.

Interestingly, the integrated pipeline with Raha and Baran achieves even higher F1 score
on large datasets, such as Tax. This is promising as it shows Raha’s clustering-based sampling
method is effective enough to sample informative tuples for both error detection and correction
tasks and we do not need separate user labels for Baran.

7.5 Summary

We extensively evaluated our proposed data cleaning approach. In summary, we observed the
followings:

• Performance. Raha and Baran significantly outperform the baseline data cleaning
approaches. In terms of effectiveness, Raha and Baran achieve both high precision and
recall due to our novel two-step task formulation. In terms of human involvement, Raha
and Baran leverage only a few user labels due to their effective feature representation
and tuple sampling method. In terms of efficiency, Raha and Baran terminate in a
reasonable time due to their parallelization and pruning techniques. Not only we can
achieve state-of-the-art error detection and correction performances with Raha and
Baran, respectively, but also we can achieve the state-of-the-art end-to-end data cleaning
performance with serializing Raha and Baran in an end-to-end data cleaning pipeline.
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• Feature representation. Raha and Baran effectively represent each potential data
error/correction by collecting the output of various base error detectors/correctors.
Overall, they achieve the best effectiveness by incorporating all the features as the
resulting feature vectors will be more expressive.

• Tuple sampling. The performance of Raha and Baran converges faster using our tuple
sampling methods as these methods sample the most informative tuples for learning
error detection/correction operations.

• Transfer learning. Transfer learning optimizes the error detection/correction
performance as Raha and Baran can learn from previous data cleaning efforts on historical
datasets. The more similar historical datasets we collect, the better performance Raha
and Baran can achieve using transfer learning.

• Classifier. The performance of Raha and Baran does not depend on the choice of the
classifier as the main impact is due to the feature representation and tuple sampling
method.

• User labeling error. Although user labeling errors naturally decrease the data cleaning
performance, Raha’s effectiveness does not collapse with limited user labeling errors as
Raha can compensate erroneous user labels with more redundant user labels.

• System scalability. Raha is scalable as its runtime increases linearly and its F1 score
stays the same when the number of data rows/columns increases.
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8
Raha and Baran in Action

We implemented our data cleaning systems, Raha and Baran, together with the transfer
learning methods in the Python 3.6 programming language on the top of Python’s data science
libraries. In particular, we leverage

• the pandas library to store and process relational data frames.

• the NumPy and SciPy libraries to conduct scientific computing operations on multidi-
mensional arrays and matrices.

• the scikit-learn library to deploy machine learning algorithms.

• the Matplotlib and PrettyTable libraries to visualize the results.

• the py7zr library, Beautiful Soup library, and MWParserFromHell package to decompress
and parse the Wikipedia page revision dump files.

• the Natural Language Toolkit (NLTK) library, difflib module, and re module to process
texts.

• the multiprocessing package to parallelize the workflow.

• the Jupyter Notebook environment to build an interactive user interface.
The implementations, documentations, and datasets are all available online1.

We first briefly review the implementation challenges. We then demonstrate how to build
an end-to-end data cleaning pipeline with Raha and Baran. Next, we elaborate the user
labeling process in a case study. Finally, we summarize the chapter.

8.1 Implementation Challenges

The high-level Python programming language and its data science libraries provide high
readability, ease of use, and fast development opportunities. However, it is still challenging to
implement Raha and Baran efficiently. The complex workflows of Raha and Baran include
a series of algorithmic steps, including running base error detectors/correctors, featurizing
their outputs, sampling tuples, and learning to predict data errors/corrections. Implementing

1https://github.com/BigDaMa/raha
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these workflows in a way that all these steps can run efficiently is not trivial in a high-level
programming language like Python. This issue is more problematic on large datasets, where
these steps must run on thousands of tuples.

We parallelized the workflows of Raha and Baran with the multiprocessing package to
address this issue. Raha runs all the error detection strategies in parallel processes. Baran
featurizes each pair of a data error and a correction candidate in parallel processes. This
way, both Raha and Baran terminate the data cleaning tasks, even on large datasets, in a
reasonable time.

8.2 Building End-to-End Data Cleaning Pipelines

Figure 8.1 shows an end-to-end data cleaning pipeline with Raha and Baran in a Jupyter
Notebook. As depicted, the workflow is modularized and each step has a dedicated application
programming interface (API). This modularized design provides the usage flexibility for the
user as the user can easily orchestrate different steps of the workflow. For example, the user
can decide to run Raha’s or Baran’s tuple sampling method to sample a tuple.

The user can also continuously monitor various indicators, such as the data cleaning
progress and the data error distribution (Figure 8.2). The iterative data cleaning process
continues until the user terminates it and stores the final cleaned dataset.

The only step that needs user involvement is the tuple labeling process. In the depicted
pipeline, we leverage a label_with_ground_truth method to label the sampled tuples via the
ground truth of the dataset. Since the ground truth is usually not available in practice, the
user has to instead label the sampled tuples manually.

8.3 Case Study: The User Labeling Process

We provide a case study to elaborate the user labeling procedure. Table 8.1 shows the 20
tuples that Raha sampled on the Flights dataset. The user takes one tuple at a time and
labels its data cells. Ideally, the user should label all the red data cells as dirty and the rest
as clean for Raha. For Baran, the user should provide the correct value of the marked data
errors as well.

The Flights dataset contains various data error types. Missing values, such as the scheduled
departure time in tuple 3, and formatting issues, such as “11:25aDec 1” as the scheduled
departure time in tuple 4, can easily be identified by the user. The user usually identifies and
fixes these data error types using either domain expertise or some sort of master data.

However, the tuples also include erroneous values that are not easily detectable. For
example, the reported departure time “2:03 p.m.” in tuple 3 does not look erroneous without
further investigation. Although this data value seems correct, it is not the correct departure
time of the flight “AA-1279-DFW-PHX”. This value violates the functional dependency Flight
→ Actual Departure Time. In this particular case, the user needs to look at master data and
check the actual departure time of the flight “AA-1279-DFW-PHX”. Note that knowing the
violated functional dependency is not a guarantee for a correct label as typically multiple
data cells are involved in the violation of a functional dependency, e.g., left-hand-side or
right-hand-side value. Thus, not every involved data cell in a violation can be considered as a
data error.

Raha and Baran highlight low-level information that support the user in the tuple annotation
process. Raha visualizes the clusters of data cells in each data column (Figure 8.3). Once the
user clicks on a data point, the user can drill down the results and see the detailed information
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An End-to-End Data Cleaning Pipeline

Error Detection with Raha

In [ ]: 

Error Correction with Baran

In [ ]: 

import raha

app_1 = raha.Detection()

app_1.LABELING_BUDGET = 20

dataset_dictionary = {

    "name": "flights",

    "path": "/home/mohammad/Desktop/raha/datasets/flights/dirty.csv",

    "clean_path": "/home/mohammad/Desktop/raha/datasets/flights/clean.csv"

}

d = app_1.initialize_dataset(dataset_dictionary)

app_1.run_strategies(d)

app_1.generate_features(d)

app_1.build_clusters(d)

while len(d.labeled_tuples) < app_1.LABELING_BUDGET:

    app_1.sample_tuple(d)

    if d.has_ground_truth:

        app_1.label_with_ground_truth(d)    

app_1.propagate_labels(d)

app_1.predict_labels(d)

app_2 = raha.Correction()

app_2.LABELING_BUDGET = 20

d = app_2.initialize_dataset(d)

app_2.initialize_models(d)

while len(d.labeled_tuples) < app_2.LABELING_BUDGET:

    app_2.sample_tuple(d)

    if d.has_ground_truth:

        app_2.label_with_ground_truth(d)

    app_2.update_models(d)

    app_2.generate_features(d)

    app_2.predict_corrections(d)

Figure 8.1: An end-to-end data cleaning pipeline with Raha and Baran in a Jupyter Notebook.

related to that particular data cell, such as which error detection strategies have marked this
data cell as a data error. Baran reports the likelihood of user-provided corrections based on
the confidence of the error corrector models and the prevalence of the observed correction in
the indexed Wikipedia page revision history. For example in Figure 8.4, three error corrector
models propose the value “7:45 p.m.” as the correction of the erroneous value “7:45pm”. The
most confident model (depicted as Model 12 ) is a substring adder that has learned to add
substrings “ ” and “.” to the erroneous values like “7:45pm” in order to fix the format. This
particular correction matches exactly to 3 corrections and matches due to a similar pattern
to 142 corrections in the Wikipedia logs. These statistics come from the value-based error
corrector models that have been pretrained on the Wikipedia page revision history.

Figure 8.5 shows the F1 score of Raha on the erroneous data columns of the Flights dataset.
Whenever a labeled tuple covers a new unseen data error type, the F1 score is improved
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8. Raha and Baran in Action

Figure 8.2: The user dashboard displays the data cleaning progress and the data error distribution.

Table 8.1: The 20 tuples that the user labeled on the Flights dataset for Raha. The red data
cells are dirty and the rest are clean.

ID Source Flight Scheduled Departure Time Actual Departure Time Scheduled Arrival Time Actual Arrival Time
1 aa AA-3-JFK-LAX 12:00 p.m. 12:11 p.m. 3:15 p.m. 3:16 p.m.

2 usatoday AA-1886-BOS-MIA 10:45 a.m. 2:20 p.m.

3 airtravelcenter AA-1279-DFW-PHX 2:03 p.m. 3:13 p.m.

4 mytripandmore AA-1544-SAN-ORD 11:25aDec 1 11:20aDec 1 5:25 p.m. 4:56 p.m.

5 weather UA-2704-DTW-PHX 11:15 a.m. 1:40 p.m.

6 flightaware AA-431-MIA-SFO 8:35 a.m. 8:51 a.m. 11:22 a.m. 11:33 a.m.

7 panynj AA-404-MIA-MCO 6:45 a.m. 6:58 a.m. 7:45 a.m. 7:32 a.m.

8 quicktrip AA-3823-LAX-DEN 9:00 p.m. 9:06 p.m. (Estimated) 12:15 a.m. 11:49 p.m. (Estimated)

9 foxbusiness AA-3-JFK-LAX 12:00 p.m. 12:12 p.m. 3:15 p.m. 3:16 p.m.

10 orbitz UA-6273-YYC-SFO 7:35aDec 1 7:27aDec 1 9:43aDec 1 8:45aDec 1

11 flightarrival UA-828-SFO-ORD 11:08 p.m. 5:11 a.m.Dec 02

12 travelocity UA-3515-IAD-MSP Not Available 8:24 a.m. Not Available 9:56 a.m.

13 aa AA-3063-SLC-LAX 8:20 p.m. 8:39 p.m. 9:20 p.m.

14 helloflight AA-1733-ORD-PHX 7:59 p.m. 10:31 p.m.

15 orbitz AA-616-DFW-DTW 10:00aDec 1 9:59aDec 1 12:35 p.m. 1:27 p.m.

16 gofox UA-2906-PHL-MCO 3:50 p.m. 4:46 p.m. 6:23 p.m. 6:35 p.m.

17 weather AA-2268-PHX-ORD 7:15 a.m. 7:23 a.m. 11:35 a.m. 11:04 a.m.

18 flylouisville AA-466-IAH-MIA 6:00 a.m. 6:08 a.m. 9:20 a.m. 9:05 a.m.

19 panynj AA-3-JFK-LAX 12:00 p.m. 12:12 p.m. 3:15 p.m. 3:16 p.m.

20 flylouisville UA-1500-IAH-GUA 9:16 a.m. 11:45 a.m.
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6 aa AA-204-LAX-MCO 11:25 p.m. 12/02/2011 06

Figure 8.3: These 2D projected clusters contain either clean (green) or dirty (red) data cells
for one data column. By clicking on a point, the user can inspect the actual value and the error
detection strategies that marked this particular data cell as a data error.

significantly. For example, by labeling tuple 2, the F1 score improves significantly on the data
columns Actual Departure Time and Actual Arrival Time, because Raha learns the missing
value data error type for these data columns. Labeling tuple 3 improves the F1 score on
the data column Actual Departure Time as well, because the classifier of this data column
learns that the value is erroneous due to the violation of a functional dependency. In fact, the
classifier learns that the functional dependency checker feature sFlight→Actual Departure Time is
an important feature for identifying data errors in the data column Actual Departure Time.
Labeling tuple 4 also improves the F1 score on the data column Actual Departure Time, because
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8.4 Summary

Figure 8.4: The user can inspect the confidence of error corrector models for a particular
correction and the number of exactly/approximately matched corrections from the Wikipedia page
revision history.
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Figure 8.5: Raha’s effectiveness on different data columns of the Flights dataset.

the classifier of this data column learns that the values with the same type of formatting as
“11:20aDec 1” are not desired. Interestingly, after labeling these four tuples, the F1 score of
Raha on the data column Actual Departure Time almost converges, because there are no more
different data error types in this data column.

The F1 score of Raha might also slightly drop on some data columns upon labeling some
tuples. For example, labeling tuple 6 slightly drops the F1 score of Raha on the data column
Scheduled Arrival Time. While the classifier of this data column learns that the value “11:22
a.m.” is a data error, the classifier overfits and labels some clean values with a similar format
as data errors. However, the F1 score of the classifier again increases in later iterations by
observing a few more similar clean values. In fact, the classifier learns that, in contrast to other
clean data cells, the data cell with the value “11:22 a.m.” is erroneous due to a functional
dependency violation.

8.4 Summary

We demonstrated our data cleaning systems, Raha and Baran, in practice. In particular, we
elaborated their implementation challenges, their usage in an end-to-end data cleaning pipeline,
and their user labeling process in a case study.
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9
Conclusion

We proposed a novel approach for the data cleaning problem. We first discuss our approach
and its limitations. We then mention potential future research directions.

9.1 Discussion

We proposed a novel data cleaning approach that effectively represents data errors/corrections
and learns to generalize the error detection/correction operation from a few user-annotated
data values to the rest of the dataset.

Our data cleaning approach addresses the error detection and correction tasks with a novel
two-step formulation. First, our approach runs a set of base error detectors and correctors on
the dataset. These base algorithms leverage various data error contexts to detect and correct
data errors. Our approach collects the output of these base error detector and correctors into
feature vectors that represent the data quality issues and the required data cleaning treatments.
Then, the approach incorporates human supervision by asking the user to annotate the most
informative tuples. The approach leverages these user labels to train classifiers that predict the
rest of data errors/corrections. Our approach can also leverage historical data to optimize this
two-step data cleaning procedure by estimating the effectiveness of the base error detectors
and pretraining the base error correctors.

Our data cleaning approach is semi supervised, example driven, and configuration free.
The approach is semi supervised as it learns to clean data with a large number of unlabeled
and a few labeled data points. The approach is example driven as it receives these a few
labeled data points from the user through examples. Finally, our approach is configuration
free as the user does not need to provide any input rules or parameters to configure it.

We designed an end-to-end data cleaning pipeline according to this approach that takes a
dirty dataset as input and outputs a cleaned dataset. Our pipeline leverages user feedback,
a set of data cleaning algorithms, and historical data, if available. Internally, our pipeline
consists of an error detection system (i.e., Raha), an error correction system (i.e., Baran), and
a transfer learning engine.

Our data cleaning systems are effective and efficient, and involve the user minimally in our
experiments. Raha and Baran achieve both high precision and recall due to our novel two-step
task formulation that significantly outperforms existing data cleaning approaches. Raha and
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Baran achieve competitive runtime as well due to our parallelization and transfer learning
optimizations. Finally, Raha and Baran minimize the whole human supervision tasks into
only annotating a few tuples due to our effective feature representation and tuple sampling
methods.

While our end-to-end data cleaning pipeline delivers outstanding performance in a hassle-
free way, it has sill some limitations. These limitations are mainly due to the assumptions that
we have to hold on the inputs of our end-to-end data cleaning pipeline, i.e., the user feedback,
the dirty dataset, and the base error detectors/correctors.

9.1.1 User Annotation Correctness

Most data cleaning tasks need to incorporate human supervision as the desired data curation
might be use-case dependent or subjective. The data cleaning process might leverage human
supervision in multiple tasks, such as providing integrity rules, statistical parameters, and
data annotations.

Similar to other data cleaning approaches, our systems are also dependent on the quality
of human supervision. In other words, if human supervision is erroneous itself, the data
cleaning task will be flawed as well. This problem has been identified in the previous rule-based
approaches in the form of obsolete [87] or inaccurate [11] integrity constraints. In our example-
driven systems, this problem might appear in the form of wrong user-provided error/correction
examples. However, we argue that Raha and Baran are more robust against this issue than
rule-based approaches because of three reasons.

1. Example-based supervision is less complicated and thus less error-prone than rule
generation. For example, it is more intuitive for the user to fix the erroneous value
“November (16, 1990)” to “16 November 1990” instead of writing a regular expression
rule to do so. Note that a rule is always a generalization of many examples and has to
undergo several tests before it can be considered as a trustworthy business rule [85].

2. Raha and Baran limit all means of human supervision, such as providing rules, parameters,
and annotations, to just labeling a few tuples. While, in existing approaches, the number
of user labels scales with the size of dataset (e.g., 1% − 10% of the dataset [41, 86]),
in our systems, the number of user labels scales with the number of data error types
of dataset (i.e., 10 − 20 tuples). This limited human interaction naturally diminishes
the possibility of human mistakes as well. At the same time, the user can always skip
examples that are hard to label.

3. When learning through examples, one can compensate human labeling errors by simply
considering more user-provided examples. Redundant user-provided examples allow
the learning model to refine the underlying error detection/correction logic. rule-based
approaches however are not that flexible as they directly enforce input rules. Thus,
wrong input rules are harder to be compensated by other user-provided refining rules.

We assume that the user is accurate, i.e., the user does not annotate values wrongly, which
is a realistic assumption considering the low required number of user labels. However, similar
to previous approaches, this assumption could create a single point of failure in our pipeline,
i.e., the user annotation procedure. However, as we showed in the experiments, the limited
number of user labeling errors does not significantly decrease the performance of our data
cleaning systems.

Alternatively, we can switch our one accurate user with a set of non-accurate crowd workers
whose provided noisy annotations need to be aggregated. This problem, which has been widely
studied in the crowdsourcing [13] and weak supervision [73] areas, is orthogonal to our data
cleaning task and therefore it is beyond the scope of this thesis.
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9.1.2 Assumptions on the Input Dataset

We hold a minimal set of basic assumptions on the input datasets and their data errors to
allow our data cleaning systems to work with the prevalent types of datasets and data errors.
However, even this minimal set of assumptions could still exclude a few types of datasets and
data errors.

We consider the input dataset to be a relational dataset and define the data errors, their
contexts, and their categories based on the structure of this data model, accordingly. Therefore,
for any other data model, such as nested structures, we need to redefine these concepts. Even
for the relational datasets, we assume that both the dataset and its ground truth must have
the same size, which hinders tuple generation and removal operations. In accordance with
literature, our data cleaning systems do not support these operations as they are more relevant
to the orthogonal duplicate detection and entity matching tasks.

We also define data errors as data values inside a dataset that deviate from the ground
truth. While this is the case in many data cleaning tasks, we might need to redefine data
errors based on data quality requirements of the user. For example, in statistical data cleaning
tasks, such as cleaning time series data, it is often does not matter that a sensor dataset
reports a temperature value as 22.4 or 22.5 degree; Both are correct values although they
might slightly deviate from the ground truth. Therefore, our general definition of data errors,
which considers even a slight deviation between the dataset and its ground truth as a data
error, might not be appropriate for those data cleaning tasks.

9.1.3 Completeness of the Base Error Detectors/Correctors

Our data cleaning systems are as complete in error detection and correction as the set of our
base error detectors and correctors is. In fact, Raha and Baran can only detect and correct
those data errors that have been marked and fixed by at least one base error detector and
corrector. If our base error detectors/correctors are not able to mark/fix a data error type,
then our data cleaning systems cannot detect/correct this data error type either.

We design a set of simple and general base error detectors/correctors that leverage all data
error contexts to fix prevalent data error types. As we showed in the experiments, this default
set is enough to achieve high performance across several real-world datasets. However, by any
means, we do not claim that our proposed set of base error detectors and correctors are complete
for any arbitrary data cleaning task. In some especial data cleaning tasks, such as cleaning
time series or satellite data, where the notion of data error is different, the user might need to
enrich our default set of base error detectors/correctors with domain-specific base algorithms.
Therefore, like many other machine learning approaches, there is no guarantees that the user
can achieve the desired performance with these default set of base error detectors/correctors
and a limited number of user labels in any arbitrary data cleaning tasks.

9.2 Future Work

Despite the promises of our novel data cleaning approach, there are still possible future research
directions for improvement.
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9.2.1 Supporting the User During the Tuple Annotation Task

Our data cleaning systems expect the user to take a tuple at a time and annotate its data cells.
While it is not unrealistic, it could be still tedious for the user to identify/fix some semantic data
error types, such as functional dependency violations, in the absence of contextual metadata.

Thus, supporting the user during the tuple annotation task could be a future research
direction. We need approaches that collect and visualize metadata evidence for each data
error/correction candidate. This way, the user can annotate the tuples more effectively.

9.2.2 Handling User Annotation Errors

Our data cleaning systems expect one accurate user to annotate a few sampled tuples. However,
in some data cleaning scenarios, we might prefer to instead have multiple non-accurate crowd
annotators as they could be cheaper to hire rather than one expert user.

Thus, extending our data cleaning systems to handle noisy annotations from crowd workers
could be another future research direction. We need approaches that aggregates these weak
supervisions into a final set of accurate annotations for our data cleaning systems.

9.2.3 Extending Transfer Learning Methods

Our data cleaning systems can benefit from transfer learning in both error detection and
correction tasks to estimate the effectiveness of the base error detection strategies and to
pretrain the base error corrector models. In addition to these transfer learning methods, there
are still other opportunities to leverage historical data.

Thus, extending the transfer learning methods to more challenging tasks could be another
research direction. We can leverage the Wikipedia page revision history to train error generator
models. These models can be used to impose real-world data errors to clean parts of datasets
and generate more training data points, according to the data augmentation technique.
Furthermore, we can design approaches to pretrain schema-dependent error corrector models,
i.e., the vicinity- and domain-based models, on the Wikipedia page revision history.

9.2.4 Scaling the Systems

Our data cleaning systems achieve outstanding effectiveness, efficiency, and human involvement
in typical settings where data size is in the order of thousands of tuples. However, when the
data size goes beyond millions of tuples, we need new approaches to scale the systems.

Thus, leveraging big data processing systems, such as Apache Flink and Apache Spark,
to make our data cleaning systems scalable could be another research direction. We can
particularly leverage these big data processing systems to generate and process huge feature
matrices with millions of data points and features.
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