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ABSTRACT
Datasets usually suffer from various data quality problems or data
errors. At the same time, there are various error detection strate-
gies to detect different kinds of data errors. To effectively detect
data errors, the user has to deploy and test multiple error detection
strategies. However, evaluating each error detection strategy on a
new dataset requires tedious manual evaluation efforts. Therefore,
estimating the performance of each strategy upfront is desirable for
a more effective strategy selection. In this paper, we propose a new
approach to estimate the performance of error detection strategies.
Our intuition is that error detection strategies will perform simi-
larly on similarly dirty datasets. We introduce the novel concept
of dirtiness profiles, which make datasets comparable with respect
to their dirtiness. Our experiments show that our system REDS
accurately estimates the performance of error detection strategies
and, solely based on automatically extracted features, outperforms
the semi-supervised baseline.
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1 INTRODUCTION
Data scientists spend about 80% of their time preparing and or-
ganizing data. One of the most time-consuming tasks in the data
preparation pipeline is data cleaning. Dirty datasets, i.e., datasets
that contain erroneous values, are hard to integrate into data ana-
lytics applications. Data errors are introduced into datasets because
of various reasons, such as typos, inconsistent handling of data,
and extraction errors [16]. Cleaning datasets generally requires the
identification of erroneous values [11] and their correction [17].

Here, we focus on the error detection task. In real-world ap-
plications, data owners prefer to verify the error detection results
manually, as most owners do not trust algorithms to manipulate the
data [2]. Furthermore, state-of-the-art data correction approaches
significantly benefit from effective error detection [17]. Current er-
ror detection tools leverage different techniques, such as detecting
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outliers or rule violations in data [2]. To effectively detect all data
errors, it is often necessary to apply more than one strategy [2, 11].
Union all [2] is a trivial solution that runs and evaluates all available
strategies on a new dataset. Unioning all the marked data values
results in a large set of potential data errors, including many false
positives, making human evaluation infeasible.

From a user’s perspective, it is not trivial to decide which er-
ror detection strategies to pick upfront. An existing solution runs
each strategy on the dataset and then evaluates the output of the
strategy on a data sample to select only the effective strategies [2].
This approach effectively estimates the precision of a strategy but
requires the user to evaluate the output of different strategies.

In this paper, we address the problem of assessing the effec-
tiveness of error detection algorithms without requiring the user
to evaluate their results. Our intuition is that, on similarly dirty
datasets, the same error detection strategies will perform similarly
well. To define similarity based on dirtiness, we introduce the novel
concept of a dirtiness profile, which is composed of various metadata
features. Mapping each dataset to its dirtiness profile, we train mod-
els that learn the similarity between previously cleaned datasets and
the new dataset. Based on these similarities, our system estimates
the effectiveness of existing error detection strategies on the new
dataset. We show that it is possible to achieve high accuracy based
on features that are extracted without any human involvement.

Estimating the effectiveness of error detection algorithms based
on their performance on previously cleaned datasets requires us
to address the following questions: (1) Which automatically ex-
tractable metadata can describe the dirtiness of a dataset? (2) How
can we use the dirtiness profile to estimate the effectiveness of error
detection strategies?

To address the aforementioned challenges, we make the follow-
ing contributions:

• We present the extensible system REDS (Section 2), which
leverages previously cleaned datasets to estimate the effec-
tiveness of error detection strategies on a newly arriving
dataset. REDS is adapted for our configuration-free error
detection system Raha [11].

• We introduce the novel concept of dirtiness profiles (Sec-
tion 3), which is the first effort towards representing the
dirtiness of datasets by domain-independent features. Our
dirtiness profile covers three dataset similarity dimensions:
content-based, structure-based, and quality-based. While
most of the features can be automatically extracted, optional
human-provided features can also be added to the profile.

• We present several experiments (Section 4) that show the
accuracy of REDS in estimating the performance of error de-
tection strategies. REDS significantly outperforms the semi-
supervised baseline approach.
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Figure 1: The workflow of REDS.

2 REDS OVERVIEW
Figure 1 shows the workflow of REDS. Given a new dataset dnew,
an error detection toolbox containing a set of error detection strate-
gies S , a dirtiness profile repository containing the profiles of previ-
ously cleaned datasets, and a set of optional user labels, the goal is
to estimate the performance (i.e., F1 score) of all the strategies s ∈ S
on the dataset dnew.

To this end, the dirtiness profiler component extracts a set of
metadata as the dirtiness profile of the new dataset. The extracted
metadata is used by the estimator component to estimate the ex-
pected performance of each error detection strategy on the new
dataset. The estimator component leverages regression models that
have been trained based on historical dirtiness profiles. Note that
there are exactly |S | independent regression models, as many as
the number of error detection strategies. Each regression model
learns to estimate the F1 score of one specific strategy s ∈ S on
the new dataset dnew. In the end, the dirtiness profile of the new
dataset along with the estimated F1 score of strategies are stored in
the dirtiness profile repository for retraining the regression models
in the future. The contributions of this paper mainly relate to the
dirtiness profiler component as it is detailed in the next section.

3 DIRTINESS PROFILE
Intuitively, similar datasets should require similar error detection
efforts as well. The similarity of datasets can be defined with re-
gard to different dimensions. Content-based and structure-based
similarities are the simplest similarity dimensions for comparing
two datasets [1, 15]. However, these similarity dimensions are not
enough as two datasets with almost the same content and structure
could suffer from different data error types, such as outliers and
rule violations. Thus, we argue that, in data cleaning context, data
quality similarity is another important similarity dimension.

We propose a dirtiness profile that summarizes the content, struc-
ture, and quality of a dataset into metadata features. Our proposed
dirtiness profile has two properties. First, it can be generated for
each dataset automatically, i.e., without any user involvement. Sec-
ond, it contains both domain-dependent (i.e., content) features and
domain-independent (i.e., structure and quality) features.
Content features. Content features represent the domain of data.
Datasets with similar data domains are likely to have similar data
errors as well. For example, multiple datasets in literature, such as
Hospital [17], Address [11], and Beers [9], contain data domains zip,
city, and state. For these content-wise similar datasets, applying the
same rule violation detection strategy that marks data cells violating

the functional dependencies such as zip→ state and city → state as
data errors is typically promising. Therefore, to capture the content
similarity, the dirtiness profile should leverage features that describe
data domains of datasets.

Our dirtiness profile contains the most frequent words and cell
values of each data column as features to represent the content of
the dataset. This way, datasets with similar data domains (e.g., city
and capital) would have similar dirtiness profiles because of the
same overlapping values.
Structure features. Structure of a dataset can be represented via
various metadata. Error detection strategies are likely to have simi-
lar effectiveness on datasets with certain data value structures. In
particular, the distribution of data types is a key characteristic to
estimate the effectiveness of error detection strategies. For example,
on datasets that mainly contain numerical data values, outlier detec-
tion strategies could be more effective than rule violation detection
strategies. Therefore, to capture the structural similarity, the dirti-
ness profile should leverage features that describe the distribution
of data value types of datasets.

Our dirtiness profile contains the fraction of unique, explicitly
missing, alphabetical, numerical, punctuational, and miscellaneous
data values as features to represent the structure of each dataset.
This way, datasets with similar distributions of data value types
would have similar dirtiness profiles.
Quality features. Datasets with similar data error distribution
need similar error detection treatments as well. Ideally, this data
error distribution should represent which fraction of each error
type exists in the dataset. For example, if we know that 5% of a
dataset is outlier and 25% of the same dataset is rule violation, then
the rule violation detection strategy is a more effective approach
for this dataset rather than the outlier detection strategy.

However, it is not trivial to accurately calculate the distribution of
data error types for a given dataset. An existing approach evaluates
the output of strategies on a data sample to estimate the distribution
of data error types [2]. For example, suppose we evaluate the output
of an outlier detection strategy on 1% of a dataset. Suppose 10
actual outlier values are identified by the user on this data sample.
Assuming that the dataset has 2500 rows and 20 columns, we can
extrapolate our observation to estimate 10×100

2500×20 = 2% of data values
as outliers. This estimation is expensive as it needs the user to
evaluate the output of all the strategies on a data sample. Thus,
it would be desirable to have an alternative set of automatically
extractable features to represent the quality of datasets.

To this end, we leverage the raw output size and overlap of error
detection strategies on datasets. The output size of a specific error
detection strategy may correlate with the actual number of data
errors. For example, the number of marked data cells by a rule vio-
lation detection strategy hints at how many actual rule violations
exist in the dataset. Thus, datasets that are associated with simi-
lar raw output sizes might be similarly dirty. Let Osize(s,d) be the
normalized number of data cells that the strategy s marks as data
errors in the dataset d . For all the available error detection strate-
gies s ∈ S , we consider the Osize(s,d) as a feature in the dirtiness
profile of dataset d . The output overlap of error detection strate-
gies captures the agreement of strategies on a particular dataset.
When two strategies have strongly overlapping raw outputs on a
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Table 1: Datasets.
Name Size Error Rate Name Size Error Rate
Hospital 1000 × 20 0.03 Address 94306 × 12 0.14
Flights 2376 × 7 0.30 Movies 7390 × 17 0.06
Rayyan 1000 × 11 0.09 Restaurants 11840 × 8 0.01
IT 2262 × 61 0.20 Soccer 100000 × 10 0.01
Beers 2410 × 11 0.16 Tax 200000 × 15 0.04
Salaries 148647 × 13 0.01

dataset, they should also be similarly effective on this dataset. Let
Ooverlap(sα , sβ ,d) be the normalized number of data cells that both
strategies sα and sβ mark in the dataset d as data errors. For all the
pairs of strategies sα , sβ ∈ S , we consider Ooverlap(sα , sβ ,d) as a
feature in the dirtiness profile of dataset d .

For the sake of completeness, REDS can also incorporate sample
precision of strategies as optional user-provided features [2]. Our
system is able to adequately estimate the performance of strategies
without this feature group, as wewill show in the experiments. Note
that measuring the recall and therefore F1 score of error detection
strategies on a data sample is not possible as we have no information
about false and true negatives [2].

4 EVALUATION
We conducted several experiments to evaluate the effectiveness of
REDS. We first explain our experimental setup and then discuss the
achieved experimental results.

4.1 Experimental Setup
We simulated a scenario where we have several cleaned datasets in
our repository with a new dirty dataset arriving. REDS estimates the
performance of error detection strategies for this new dataset, ac-
cording to the well-known leave-one-out methodology [18]. We use
mean squared error (MSE) to measure the quality of the estimated
performances asMSE = 1

|S |
∑
s ∈S

(
F (s,dnew)− F̂ (s,dnew)

)2
,where

F (s,dnew) is the actual and F̂ (s,dnew) is the estimated F1 score of
the error detection strategy s on the new dataset dnew. In each ex-
perimental run, we compute the average MSE by considering each
of the datasets as the new dataset. We repeat each experimental run
10 times and report the mean and standard deviation of MSE. As
the default parameter setting, we apply all the feature groups and
the available dirtiness profiles. We also set the sampling rate for
the sample precision features to 1% and the regression models to
gradient boosting regression [8]. Our prototype is available online1.
Datasets.We evaluate our system on 11 diverse datasets as listed
in Table 1. Hospital [17], Flights [17], Rayyan [12], IT [2], Beers [9],
Salaries [20] are real-world datasets that we have obtained along
with their ground truth fromprevious research projects.Address [11]
is a proprietary dataset with ground truth. Movies and Restaurants
are available datasets in the Magellan repository [7]. We used the
existing labels for the duplicate tuples to provide ground truth
for them. Soccer and Tax are synthetic datasets from the BART
repository [3]. The domains of these datasets are different, so that
simple domain-dependent similarity measures will not capture the
similarity of datasets. Nevertheless, dirtiness profiles should be able
to represent the similarity of these diverse datasets.

1https://github.com/BigDaMa/reds

Table 2: Error detection strategies.
Name Configuration Name Configuration
Histogram I 0.8, 0.1 Gaussian Mixture I 2, 0.005
Histogram II 0.8, 0.2 Gaussian Mixture II 2, 0.010
Histogram III 0.9, 0.2 Gaussian Mixture III 2, 0.050
Gaussian I 1.0 Partitioned Histogram I 05, 0.8, 0.1
Gaussian II 1.5 Partitioned Histogram II 10, 0.8, 0.1
Gaussian III 2.0 Partitioned Histogram III 15, 0.8, 0.1
NADEEF All Discovered Rules OpenRefine All Discovered Patterns

KATARA DBpedia Knowledge Base

Error detection strategies. We have 15 error detection strate-
gies in our experimental toolbox as listed in Table 2. Histogram
Modeling, Gaussian Modeling, Gaussian Mixture Modeling, and
Partitioned Histogram Modeling are outlier detection strategies im-
plemented in the dBoost system [14]. NADEEF [6] is a rule violation
detection system. OpenRefine [19] can be used to detect pattern
violations. KATARA [5] is a knowledge base violation detection sys-
tem. To configure the rule and pattern violation detection strategies,
we used data constraints that were given by the data owners. Addi-
tionally, we used the data profiling tool Metanome [13] to discover
further valid data constraints on the ground truth of the datasets.
The data constraints contain rules, such as functional dependency
zip → city, and patterns, such as "zip should be a 5-digit value".
To configure the knowledge base violation detection system, we
linked it to the well-known DBpedia knowledge base [4]. For the
outlier detection strategies, there is a wide range of possible statis-
tical parameters, which are typically unknown to the user. For this
reason, we configured each outlier detection strategy with three
recommended parameters based on the dBoost system suggestions.

4.2 Experimental Results
System effectiveness. To show the effectiveness of REDS, we
compare three approaches:

(1) Maximum entropy-based approach [2]. In this baseline
approach, the user runs all the error detection strategies
on the new dataset. Then, she evaluates the precision of
strategies on a data sample. The F1 score of each strategy is
estimated by its sample precision.

(2) Unsupervised REDS. In this approach, our system lever-
ages all the features except the optional sample precision
of strategies, which need user involvement. We call this
approach unsupervised REDS because, here, the dirtiness
profile can be generated automatically.

(3) Full REDS. In this approach, REDS leverages all the intro-
duced features as the dirtiness profile.

Figure 2(a) illustrates the MSE of the three mentioned approaches.
Since the maximum entropy-based approach and full REDS leverage
the evaluated precision of strategies on a data sample, we compare
themwith different sample sizes, i.e., 1% to 5%. The full and unsuper-
vised versions of REDS always outperform the baseline approach.
The results particularly show that the unsupervised dirtiness profile
works sufficiently effective. Note that the runtime of unsupervised
REDS, which does not require human involvement, is in the order of
minutes. Extracting those features that are dependent on the output
of strategies dominates the runtime as extracting them requires
running all the error detection strategies on the new dataset.

https://github.com/BigDaMa/reds
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Figure 2: MSE of REDS with different (a) sampling rates, (b) feature groups, (c) regression models, and (d) repository sizes.

Feature impact analysis. Figure 2(b) illustrates the MSE of REDS
when it leverages different subsets of feature groups as the dirt-
iness profile. All the feature groups are informative for the task
as REDS estimates most accurately by incorporating all of them
(CF+SF+QF). The most informative feature group is data quality
features (QF) because it practically captures the error distributions
across datasets.
Model impact analysis. Figure 2(c) illustrates the MSE of REDS
when it uses different regression models. In particular, we tested lin-
ear regression (LR), ridge regression (RR), decision tree regression
(DTR), and gradient boosting regression (GBR), all implemented
in scikit-learn Python module. We applied grid search to find the
best hyperparameters for each regression model. The choice of the
regression model does not significantly affect the overall perfor-
mance of REDS as the major performance impact is gained due to
the dirtiness profile.
Repository size impact analysis. Figure 2(d) illustrates the MSE
of REDS while increasing the number of dirtiness profiles in the
repository. We start to train the regression models with just one
dirtiness profile. As the number of training dirtiness profiles in-
creases, the MSE decreases as well, because it becomes more likely
to find a similar dirtiness profile in the repository. When having
around 7 dirtiness profiles as the training set, the performance of
REDS almost converges. This is promising as the performance does
not require unrealistically large repositories.

5 RELATEDWORK
Error detection.Our approach aims at estimating the performance
of existing error detection strategies [5, 6, 14]. Maximum entropy-
based approach [2] is one of the efforts in this direction that selects
strategies based on their precision on evaluated samples. While
this approach completely relies on user involvement, REDS learns
from previous error detection tasks to omit user labeling costs.
Furthermore, REDS includes the sample precision as an optional
feature group.
Dataset similarity. Defining the similarity between datasets has
been confined to the content-based and structure-based similarities
so far [1, 15]. Additionally, we define dirtiness similarity as a novel
dimension for measuring the similarity between datasets.
Data repairing. Our approach is orthogonal to data repairing [10,
17] as we are reasoning about error detection. In fact, accurate error
detection improves the data repairing procedure as well [17].

6 CONCLUSION
We addressed the problem of estimating the effectiveness of error
detection strategies on datasets based on their performance on
similarly dirty datasets. We introduced the dirtiness profile that
represents the dirtiness of a dataset based on domain-independent
features. As our experimental results show, even with only auto-
matically extractable features, our system outperforms the semi-
supervised baseline.
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