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ABSTRACT

Error correction is one of themost crucial and time-consuming steps

of data preprocessing. State-of-the-art error correction systems

leverage various signals, such as predefined data constraints or

user-provided correction examples, to fix erroneous values in a

semi-supervised manner. While these approaches reduce human

involvement to a few labeled tuples, they still need supervision to

fix data errors. In this paper, we propose a novel error correction

approach to automatically fix data errors of dirty datasets. Our

approach pretrains a set of error corrector models on correction

examples extracted from the Wikipedia page revision history. It

then fine-tunes these models on the dirty dataset at hand without

any required user labels. Finally, our approach aggregates the fine-

tuned error corrector models to find the actual correction of each

data error. As our experiments show, our approach automatically

fixes a large portion of data errors of various dirty datasets with

high precision.
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· Information systems→ Data cleaning; · Theory of compu-

tation → Data integration.
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1 INTRODUCTION

Data cleaning is a crucial task in any data science pipeline. Ac-

cording to CrowdFlower’s Data Science Report 2016, data scientists

spend 60% of their time in data analytics to clean and organize

datasets [1]. Data cleaning aims to detect and correct erroneous val-

ues in datasets [16]. Due to the challenges and the time-consuming
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nature of data cleaning, data scientists usually consider it as a two-

step task: (1) error detection, which identifies erroneous values

in the dirty dataset, and (2) error correction, which replaces the

erroneous values with correct values [16].

State-of-the-art error detection and correction systems are semi-

supervised [16, 17]. They require a few labeled tuples from the user

to train error detectors/correctors. In fact, they take a few example

data errors and their correction from the user to mark and fix the

rest of the data errors by generalizing error detection/correction op-

erations [9, 16, 17]. These approaches are promising as they achieve

high performance using only a few labeled tuples. However, at the

same time, they admit the fact that limited human involvement

in data cleaning is inevitable [16]. That is, fully automated data

cleaning is still hard to achieve.

Recently, there has been a new line of research to automatically

detect a portion of data errors of dirty datasets with high preci-

sion [10, 22]. These unsupervised approaches learn typical patterns

of clean values from a huge set of web tables to identify erroneous

values of a given dirty dataset that do not comply with those typical

learned patterns. Of course, without any human supervision, these

unsupervised approaches can only detect a portion of data errors of

a given dataset. However, as long as the error detection approach

is accurate and automated, it is still highly valuable as łany recall

for free is better than no recallž [22].

While automated error detection approaches have been already

studied [10, 22], studying automatic error correction has been

mainly neglected. Error correction is more challenging than er-

ror detection due to its search space [16]. While error detection

is a binary classification task, where each data value is classified

as clean or dirty, the search space of error correction is theoreti-

cally infinite. That is, potentially any possible string could be the

correction of an erroneous value. Therefore, without any human

supervision, this challenging task seems even more complex.

In this paper, we propose a new unsupervised error correction

approach to automatically fix as many data errors of dirty datasets

as possible. The intuition is that we can learn prevalent syntactic

and semantic error correction operations from historical revision

logs and then apply them to new dirty datasets. To extract error

correction examples, we leverage the Wikipedia page revision his-

tory as it has been shown to be a rich resource for training error

corrector models [16]. We pretrain various error corrector models

on the Wikipedia page revision history and then fine-tune them

on the given dirty dataset. The fine-tuned error corrector models

propose various correction candidates for each data error of the

dirty dataset. In contrast to the semi-supervised error correction

systems [16], our unsupervised approach automatically aggregates

the error correction models to replace erroneous values of dirty
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datasets with the most likely correction candidates. While, without

any human supervision, our approach naturally can replace only a

portion of erroneous values, these automatic corrections are highly

accurate. Therefore, we make the following contributions:

• We propose a new unsupervised error correction approach

to automatically fix syntactic and semantic data errors.

• We show how to turn the edit distance [15] and fastText [11]

models into general-purpose error corrector models. We

propose a method to effectively pretrain these models on

the Wikipedia page revision history and then fine-tune and

aggregate them on the dirty datasets.

• We thoroughly evaluate our unsupervised error correction

approach via extensive experiments on real-world and syn-

thetic datasets.

2 AUTOMATIC ERROR CORRECTION

Figure 1 shows the workflow of our approach. The input to our ap-

proach is a dirty dataset. In accordance with other error correction

systems [16, 20], we assume erroneous cells of this dirty dataset

are already marked by an upstream error detection step. Our error

correction approach aims at automatically fixing as many of these

detected data errors as possible with high precision.

As shown in Figure 1, our approach has three main phases: (1)

extracting revision data, (2) pretraining and fine-tuning models,

and (3) aggregating models.

2.1 Revision Data Extraction

Wikipedia is a free encyclopedia where anyone can access and

edit a wiki page. When a piece of information is edited by users,

Wikipedia keeps its edit history alongside its previous incorrect ver-

sions. All these revision histories are stored in the Wikipedia dump

files [2]. TheWikipedia page revision history is an information-rich

resource for the error correction task. The value-based corrections

extracted from these revision logs have been shown to be effec-

tive for pretraining and aggregating error corrector models in a

semi-supervised manner [16]. However, in our unsupervised er-

ror correction scenario, learning value-based corrections, such as

replacing łUSž with łUnited Statesž, is not enough. Since our ap-

proach aims at automatically correcting data errors, it needs to also

extract the context of value-based corrections from the Wikipedia

revisions to learn, in which contexts, a potential correction would

be most likely accurate.

Our approach compares any subsequent revision versions of

Wikipedia pages to extract correction examples along with their

context from the Wikipedia tables and infoboxes. In particular, our

approach extracts the erroneous value itself, its user-revised correct

value, and the contextual values in adjacent rows and columns of

Wikipedia tables and infoboxes. These extracted revision data are

stored as structured JSON files. This way, we can pretrain context-

aware error corrector models.

2.2 Pretraining and Fine-Tuning Models

Same as state-of-the-art error correction systems, our approach

aims at fixing both syntactic data errors, such as typos, and se-

mantic data errors, such as the wrong usage of łHollandž instead

of łNetherlandsž [16]. Thus, we need to leverage error corrector

Figure 1: The workflow of our error correction approach.

models that can theoretically capture and fix both of these general

data error types.

A couple of error corrector models have been proposed so far

for fixing syntactic and semantic data errors [16]. For example, sub-

string adder models can add substring łeetž to an erroneous value

łStrž to generate the correct value łStreetž. Functional dependencies

can also be considered as error corrector models that can fix seman-

tic data errors based on their contextual values. However, these

error corrector models are not suitable for our unsupervised error

correction scenario as they need human supervision. The user has

to provide some example corrections so that these models can learn

which substring adder operations and functional dependencies are

valid for data errors of this particular dataset [16].

Therefore, in the lack of human supervision, we have to choose

more generic families of error corrector models that can fix only

general syntactic and semantic data errors but in an automatic

way. We turn the edit distance [15] and fastText [11] models, which

can capture the syntactic and semantic similarity of values respec-

tively, into error corrector models. Even in the lack of any human

supervision, we can still decide to whether accept their proposed

corrections or not based on their correction likelihood.

Edit distance. Edit distance refers to the minimal operations, i.e.,

insertions, deletions, and substitutions, that are needed to transform

one string into another [15]. It is widely used as a measure to fix

spelling errors [5]. Edit distance is useful to fix syntactic errors

when a dataset preserves redundant values.

We design an error corrector model based on the edit distance

measure to fix syntactic errors. For each erroneous value, edit dis-

tance proposes correction candidates from a trained pool of candi-

dates. A probability score 𝑃ed (𝑐 |𝑒) is assigned to each correction

candidate 𝑐 of a data error 𝑒 as

𝑃ed (𝑐 |𝑒) =
𝑐𝑜𝑢𝑛𝑡 (𝑐,𝑉 )

|𝑉 |
, (1)

where 𝑐𝑜𝑢𝑛𝑡 (𝑐,𝑉 ) is the frequency of the correction candidate 𝑐 in

the pool of correction candidates 𝑉 and |𝑉 | is the total number of

correction candidates in the pool.

The correction candidate pool is generated in the pretraining

phase and then fine-tuned on the current dataset. In the pretraining

phase, we leverage the extracted value-based corrections of the
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Wikipedia page revision history to collect the most similar cor-

rections of each erroneous value in terms of edit distance. In the

fine-tuning phase, we enrich this default correction candidate pool

by adding the most similar clean values in the same data columns

of the data error.

fastText.Word embedding approaches transform words into dense

vectors of floating-point values [19]. One of the main benefits of

these vectors is that they can represent the semantic similarity of

textual values. For example, the semantically similar values łcatž

and łdogž will have similar vector representations. Word2vec [19]

is one of the most popular word embedding models that have been

used for error detection as well [12]. fastText extends word2vec by

utilizing the substring- and sentence-level information [11]. In addi-

tion to words, fastText can represent substrings of words by vectors.

Furthermore, supervised fastText can be used for text classification

problems, such as spam detection and sentiment analysis.

We use fastText as an error corrector model to remove semantic

errors. In particular, we leverage its sentence classification tech-

nique to capture the correlation between values of different columns.

In the pretraining phase, the fastText model trains on the extracted

web tables and infoboxes of the Wikipedia page revision history.

In fact, the fastText model learns to predict the corrected value of

an erroneous cell using substrings of the contextual values. For

example, when an erroneous value łMerCelž has a neighboring

data cell łChancellor, Germany, CDUž, fastText can propose the

correction candidate łMerkelž with high probability as this value

has a similar vector representation to the neighboring substrings

łChancellorž, łGermanyž, and łCDUž. In the fine-tuning phase, we

update the pretrained supervised fastText model in two ways. If

the dirty dataset has predefined data constraints, such as functional

dependencies, we update the pretrained fastText classifier based on

each predefined functional dependency, where the model learns to

predict the dependent target attribute based on the independent

feature attributes. In the lack of predefined data constraints, we

fine-tune the fastText classifier for each attribute of the dataset. In

fact, the fastText model learns to predict each attribute based on

other attributes.

fastText represents each contextual value and each potential

correction candidate as a vector in a multidimensional space. There-

fore, fastText can calculate the probability score for each correction

candidate based on the similarity of the context vector and the cor-

rection candidate vector. Formally, it assigns the probability score

𝑃ft (𝑐 |𝑒) to each correction candidate 𝑐 of a data error 𝑒 as

𝑃ft (𝑐 |𝑒) =
exp

(

𝑦 (𝑐)
)

∑

𝑐′ exp
(

𝑦 (𝑐 ′)
) , (2)

where 𝑦 (𝑐) is the dot product of the context vector and the correc-

tion candidate vector.

2.3 Model Aggregation

The pretrained and fine-tuned edit distance and fastText error cor-

rector models propose various syntactic and semantic correction

candidates for each data error. Now, we need to aggregate these

correction candidates into one final correction for each data error.

The main challenge here is that, since our approach is designed to

be unsupervised, we cannot ask the user to provide feedback to

learn the best aggregation function [16].

In the lack of user supervision, we have to resort to aggregation

formulas to combine our two probabilistic error corrector models

in a way that we can control their corresponding weight. For each

correction candidate 𝑐 of a data error 𝑒 , we compute the aggregated

correction probability as

𝑃 (𝑐 |𝑒) = 𝑧 × 𝑃ed (𝑐 |𝑒) + (1 − 𝑧) × 𝑃fd (𝑐 |𝑒), (3)

where 𝑧 is the aggregation coefficient. Since in our automated error

correction setting the precision of error correction is important, we

also define a cutoff threshold 𝜃 to specify the minimum acceptable

correction probability. In fact, our approach only selects the most

probable correction candidate 𝑐∗ of a data error 𝑒 if 𝑃 (𝑐∗ |𝑒) >= 𝜃 .

3 EVALUATION

3.1 Experimental Setup

Datasets. We evaluate our approach on three different datasets.

Hospital [20] is a small dataset with 1000 rows and 20 columns. It

has a lot of duplicate tuples and a relatively low error rate (3%).

The main data error types of this dataset are typos and violated

functional dependencies. Tax [3] is a synthetic large dataset with

200000 rows and 15 columns. It has data errors of formatting issues,

typos, and violated functional dependencies. Flights [16, 20] is a

real-world dataset with 2376 rows and 7 columns. Its high data error

rate (30%) is mainly due to the violated functional dependencies.

Evaluation measures.We evaluate the correctness and complete-

ness of our unsupervised error correction approach by reporting

precision, recall, and 𝐹1 score [16, 20]. It is worth emphasizing that,

since our approach is automated, our main goal is to maximize pre-

cision, similar to unsupervised error detection approaches [10, 22].

Nevertheless, we also show that recall of our approach is also high

when data redundancy is preserved.

Baselines. We compare our system to three baselines:

(1) Baran [16] is a semi-supervised data cleaning approach. We

ran this approach with different numbers of user labels.

(2) HoloClean [20] repairs dirty datasets holistically by combin-

ing integrity constraints, matching dependencies, and exter-

nal knowledge bases. We ran this system with and without

providing data constraints.

(3) Katara [6] repairs datasets by cross-checking them with ex-

ternal knowledge bases. We connected Katara to the DBpe-

dia [4] knowledge base.

Our default setting. By default, our approach leverages both edit

distance and fastText error corrector models. They have been pre-

trained on 100000 web tables and infoboxes from the Wikipedia

page revision history. To aggregate these models, we set the aggre-

gation coefficient 𝑧 = 0.5 and cutoff threshold 𝜃 = 0.75. We assume

there are no predefined user-provided data constraints for dirty

datasets. Our prototype, including further experiments and results,

is available online1.

1https://github.com/hasantuberlin/AutoECUWRH
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Table 1: Comparison with baselines.
Approach Tax Flights Hospital

P R 𝐹1 P R 𝐹1 P R 𝐹1

Baran (With 0 Labels) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HoloClean (Without Denial Constraints) N/A+ N/A N/A 0.79 0.38 0.51 0.97 0.90 0.93

Katara (With DBpedia Knowledge Base) 0.59 0.01 0.02 0.00 0.00 0.00 0.98 0.24 0.29

Baran (With 20 Labels) 0.84 0.78 0.81 1.00 1.00 1.00 0.88 0.86 0.87

HoloClean (With Denial Constraints) 0.11 0.11 0.11 0.81 0.39 0.52 0.97 0.90 0.93

Our Unsupervised Approach 1.00 0.02 0.01 0.97 0.05 0.10 1.00 0.45 0.62

Our Correctly Fixed Data Errors 1200 265 229
+ HoloClean did not terminate after running for three hours.

Table 2: The effect of pretraining/fine-tuning of the models.
Model Tax Flights Hospital

P R 𝐹1 P R 𝐹1 P R 𝐹1

Edit Distance Pretrained 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Edit Distance Fine-tuned 0.53 0.02 0.03 0.05 0.02 0.02 0.78 0.59 0.67

fastText Pretrained 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

fastText Fine-Tuned with Data Constraints 1.00 0.01 0.01 1.00 0.83 0.90 1.00 0.28 0.43

fastText Fine-Tuned without Data Constraints 0.20 0.01 0.01 0.87 0.14 0.24 0.84 0.39 0.53

Both Models Pretrained and Fine-Tuned 1.00 0.02 0.01 0.97 0.05 0.10 1.00 0.45 0.62

3.2 Experimental Results

Comparison with baselines. Table 1 shows that, in the lack of

human supervision, our approach outperforms all the baselines

in terms of precision. Although our automated error correction

approach maximizes precision, we also report the number of cor-

rectly fixed data errors for each dataset to highlight the benefits of

our approach. Since our approach is unsupervised but some of our

baselines need human supervision, we ran those semi-supervised

approaches in two modes: with their default requirements and also

without any user supervision. This way, we can have a fair compari-

son between the semi-supervised approaches and our unsupervised

error correction approach.

The baselines cannot achieve high precision in the unsupervised

setting as they need some sort of human supervision. Without

user-provided correction examples, Baran cannot fix any data error.

Without user-provided data constraints, HoloClean cannot always

achieve its original precision. With a general knowledge base like

DBpedia, Katara cannot fix data errors accurately as the user did

not create a domain-related knowledge base for each particular

dataset. Of course, human supervision, i.e., a few labeled tuples for

Baran and user-provided data constraints for HoloClean, improves

the performance of our baselines. Nevertheless, even when our

baselines leverage human supervision, our unsupervised approach

outperforms them in terms of precision on the tax and hospital

datasets and achieves a competitive precision on the flights dataset.

Pretraining and fine-tuning. Table 2 shows the effectiveness of

our approach when it uses different pretrained or fine-tuned error

corrector models. Our approach achieves high precision when the

error corrector models are both pretrained and fine-tuned. We get

a precision score of 1.00 for all datasets by using just the fine-tuned

supervised fastText model with data constraints. However, data

constraints might not always be provided for dirty datasets. It is

promising that our unsupervised approach can achieve almost the

same precision without using any data constraint when it aggre-

gates pretrained and fine-tuned edit distance and fastText models.

Model aggregation. Figure 2 shows the impact of the aggregation

parameters on the overall performance of our approach. Naturally,

increasing 𝜃 increases precision as we set a higher cutoff thresh-

old for our approach. Our approach achieves relatively the same

precision with different 𝑧 values on all datasets except tax. On this
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Figure 2: Precision with different (a) 𝑧 and (b) 𝜃 .

dataset, we get a precision score of 0.0 when 𝑧 > 0.5. Based on

Equation 3, when 𝑧 > 0.5, the correction candidates of the edit

distance model receive higher weights. However, the edit distance

model cannot fix data errors of this dataset because the probability

scores of its proposed correction candidates are below the cutoff

threshold. Therefore, these correction candidates are discarded.

4 RELATEDWORK

We aim at correcting erroneous values of dirty datasets automati-

cally. Hence, we explore the recent data cleaning approaches that

either addressed the error correction task or are automatic.

Error correction. State-of-the-art error correction systems com-

bine multiple internal signals to learn corrections [16, 20]. Baran

[16] is a semi-supervised data cleaning system, which holistically

combines different error correction models. The user needs to pro-

vide correction examples for this system to train classifiers that

predict the correction of each data error. HoloClean [20] also uni-

fies repairing signals, such as integrity constraints and matching

dependencies. The user needs to encode data constraints and link

the dataset to relevant external sources. Other error correction ap-

proaches also rely on user-provided data constraints [7], external

sources [6, 14], cleaned data samples [8, 21], or continuous user feed-

back [13, 23]. These general-purpose error correction approaches

are designed to repair datasets with user-specified data quality

requirements. However, our unsupervised approach is complemen-

tary to these systems as it can be incorporated in data cleaning

pipelines with no effort to accurately fix a large portion of data

errors for free.

Automatic data cleaning. Data cleaning approaches usually re-

quire some sort of human supervision as the notion of high-quality

data is user dependent [16]. Human-involvement-free data cleaning

is shown to be possible if we limit the scope of the error correction

task to a specific data error type, such as missing values [18]. Un-

supervised error detection using a huge repository of web tables is

also shown to be feasible [10, 22]. Similarly, our approach learns

common correction operations from historical revision data to fix a

portion of data errors of the new dirty dataset with high precision.

However, our approach is not confined to a specific data error type.

5 CONCLUSION

We proposed a new unsupervised error correction approach that

automatically fixes data errors. As our experiments show, in the lack

of human supervision, our approach outperforms state-of-the-art

error correction systems in terms of precision. We plan to improve

the recall of our automatic approach by data enrichment.
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